RAS PhysicsПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

Analysis of Angle Resolved X-ray Photoelectron Emission Spectra of Highly Oriented Pyrolytic Graphite

PII
S30345731S1028096025040098-1
DOI
10.7868/S3034573125040098
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
63-69
Abstract
The interest in Van-der-Waals structures is associated with their unique physical and chemical properties and the prospects for technological applications. In this work, the object of study is highly oriented pyrolytic graphite as a model of such materials. The experimental results of measuring the spectra of angle resolved X-ray photoelectron spectroscopy are presented. The experiments were performed for detection angles of 0°, 60°, 80° and 85° from the surface normal, which made it possible to maximally localize the XPS signal generated by the upper layer of the highly oriented pyrolytic graphite. A technique for reconstructing the differential cross section of inelastic electron energy losses from experimental X-ray photoelectron spectroscopy spectra is presented. According to this technique, the differential cross section of inelastic electron scattering in the highly oriented pyrolytic graphite was reconstructed for each detection angle. The obtained cross sections are compared with those reconstructed for graphene with a different number of layers. The determining influence of collective plasmon electron energy losses on the formation of the energy loss spectrum in heterogeneous Van der Waals structures is indicated.
Keywords
ван-дер-ваальсовские материалы высокоориентированный пиролитический графит графен плазмонные возбуждения рентгеновская фотоэлектронная спектроскопия нормированное дифференциальное сечение неупругого рассеяния электронов
Date of publication
26.01.2025
Year of publication
2025
Number of purchasers
0
Views
47

References

  1. 1. Geim A.K., Grigorieva I.V. // Nature. 2013. V. 499. P. 419. https://www.doi.org/10.1038/nature12385
  2. 2. Novoselov K.S., Castro Neto A.H. // Phys. Scr. 2012. V. 2012. № T146. P. 014006. https://www.doi.org/10.1088/0031-8949/2012/T146/014006
  3. 3. Barrett N., Krasovskii E.E., Themlin J.M., Strocov V.N. // Surf. Sci. 2004. V. 566-568. P. 532. https://www.doi.org/10.1016/j.susc.2004.05.104
  4. 4. Werner W.S.M., Bellissimo A., Leber R., Ashraf A., Segui S. // Surf. Sci. 2015. V. 635. P. L1. https://www.doi.org/10.1016/j.susc.2014.12.016
  5. 5. Werner W.S.M., Astašauskas V., Ziegler P., Bellissimo A., Stefani G., Linhart L., Libisch F. // Phys. Rev. Lett. 2020. V. 125. № 19. P. 196603. https://www.doi.org/10.1103/PhysRevLett.125.196603
  6. 6. Taft E.A., Philip H.R. // Phys. Rev. 1965. V. 138. № 1A. https://www.doi.org/10.1103/PhysRev.138.A197
  7. 7. Wallace P. // Phys. Rev. 1947. V. 71. № 9. P. 622. https://www.doi.org/10.1103/PhysRev.71.622
  8. 8. Marinopoulos A.G., Reining L., Olevano V., Rubio A., Pichler T., Liu X., Knupfer M., Fink J. // Phys. Rev. Lett. 2002. V. 89. № 7. P. 076402. https://www.doi.org/10.1103/PhysRevLett.89.076402
  9. 9. Papageorgiou N., Portail M., Layet J. M. // Surf. Sci. 2000. V. 454-456. P. 462. https://www.doi.org/10.1016/S0039-6028 (00)00127-8
  10. 10. Eberlein T., Bangert U., Nair R.R., Jones R., Gass M., Bleloch A.L., Novoselov K.S., Geim A., Briddon P.R. // Phys. Rev. B. 2008. V. 77. № 23. P. 233406. https://www.doi.org/10.1103/PhysRevB.77.233406
  11. 11. Pauly N., Novak M., Tougaard S. // Surf. Interface Anal. 2013. V. 45. № 4. P. 811. https://www.doi.org/10.1002/sia.5167
  12. 12. Tanuma S., Powell C., Penn D. // Surf. Interface Anal. 2011. V. 43. № 3. P. 689. https://www.doi.org/10.1002/sia.3522
  13. 13. Hoffman S. Auger and X-Ray Photoelectron Spectroscopy in Materials Science. Berlin Heidelberg: Springer, 2012. 528 pp. https://doi.org/10.1007/978-3-642-27381-0
  14. 14. NIST Electron Elastic-Scattering Cross-Section Database, Version 5.0. (2002) https://srdata.nist.gov/srd64/
  15. 15. Salvat F., Jablonski A., Powell C.J. // Comput. Phys. Commun. 2005. V. 165. № 2. P. 157. https://www.doi.org/10.1016/j.cpc.2004.09.006
  16. 16. Garcia-Molina R., Abril I., Denton C.D., Heredia-Avalos S. // Nucl. Instrum. Meth. B. 2006. V. 249. № 1-2. P. 6. https://www.doi.org/10.1016/j.nimb.2006.03.011
  17. 17. Strehlow W.H., Cook E.L. // J. Phys. Chem. Ref. Data. 1973. V. 2. № 1. P. 163.
  18. 18. Afanas′ev V.P., Bocharov G S., Gryazev A.S., Eletskii A.V., Kaplya P.S., Ridzel O.Y. // J. Phys.: Conf. Ser. 2018. V. 1121. P. 012001. https://www.doi.org/10.1088/1742-6596/1121/1/012001
  19. 19. Afanas′ev V.P., Bocharov G.S., Eletskii A.V., Ridzel O. Yu., Kaplya P.S., Koppen M. // J. Vac. Sci. Technol. B. 2017. V. 35. № 4. P. 041804. https://www.doi.org/10.1116/1.4994788
  20. 20. Afanas′ev V.P., Bocharov G.S., Gryazev A.S., Eletskii A.V., Kaplya P.S., Ridzel O.Yu. // J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2020. V. 14. № 2. P. 366. https://www.doi.org/10.1134/S102745102002041X
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library