RAS PhysicsПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

Photocatalytic Activity of Ba-Doped BiFeO Nanoparticles

PII
S30345731S1028096025040138-1
DOI
10.7868/S3034573125040138
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
89-100
Abstract
In this work, nanopowders of the BiBaFeO system (x=0, 0.10, 0.20) were synthesized by the combustion method of nitrate-organic precursors. The effect of doping bismuth ferrite (BiFeO) with barium (Ba) ions on the morphology, crystal structure and photocatalytic activity of the material was studied. X-ray diffraction analysis showed that all samples crystallize into a rhombohedrally distorted perovskite structure with the R3c space group. Doping with barium led to a significant decrease in the crystallite sizes, as well as to a distortion of the crystal lattice. In the case of 20% substitution, the formation of BaCO impurity was observed, which was also confirmed by the analysis of the Raman spectra. It is shown that the introduction of barium leads to the formation of a more porous texture and a significant increase in the specific surface area of the material. The original BiFeO demonstrated an extremely low efficiency of methylene blue decomposition relative to photolysis, while doping with barium led to a significant improvement in the photocatalytic characteristics of the material: in the case of 20% Ba substitution, the decomposition of methylene blue reached 99% in 1 hour.
Keywords
феррит висмута BiFeO3 барий синтез легирование нанопорошок фотокатализ метиленовый синий структура комбинационное рассеяние света
Date of publication
20.01.2025
Year of publication
2025
Number of purchasers
0
Views
60

References

  1. 1. Lefebvre O., Moletta R. // Water Res. 2006. V. 40. P. 3671. https://www.doi.org/10.1016/J.WATRES.2006.08.027
  2. 2. Pirila M., Saouabe M., Ojala S., Rathnayake B., Drault F., Valtanen A., Huuhtanen M., Brahmi R., Keiski R.L. // Top. Catal. 2015. V. 58. P. 1085. https://www.doi.org/10.1007/S11244-015-0477-7
  3. 3. Nakata K., Fujishima A. // J. Photochem. Photobiol. C Photochem. Rev. 2012. V. 13. P. 169. https://www.doi.org/10.1016/J.JPHOTOCHEMREV.2012.06.001
  4. 4. Mishra M., Chun D.M. // Appl. Catal. A Gen. 2015. V. 498. P. 126. https://www.doi.org/10.1016/J.APCATA.2015.03.023
  5. 5. Lee G.J., Wu J.J. // Powder Technol. 2017. V. 318. P. 8. https://www.doi.org/10.1016/J.POWTEC.2017.05.022
  6. 6. Gu X., Li C., Yuan S., Ma M., Qiang Y., Zhu J. // Nanotechnology. 2016. V. 27. P. 402001. https://www.doi.org/10.1088/0957-4484/27/40/402001
  7. 7. Vavilapalli D.S., Srikanti K., Mannam R., Tiwari B., Mohan Kant M., Rao M.S.R., Singh S. // ACS Omega. 2018. V. 3. P. 16643. https://www.doi.org/10.1021/ACSOMEGA.8B01744
  8. 8. Mohan S., Subramanian B., Sarveswaran G. // J. Mater. Chem. C. 2014. V. 2. P. 6835. https://www.doi.org/10.1039/C4TC01038H
  9. 9. Khan H., Lofland S.E., Ahmed J., Ramanujachary K.V., Ahmad T. // Int. J. Hydrogen Energy. 2024. V. 58. P. 717. https://www.doi.org/10.1016/J.IJHYDENE.2024.01.257
  10. 10. Lacerda L.H.S., de Lazaro S.R. // J. Photochem. Photobiol. A Chem. 2020. V. 400. P. 112656. https://www.doi.org/10.1016/J.JPHOTOCHEM.2020.112656
  11. 11. Catalan G., Scott J.F. // Adv. Mater. 2009. V. 21. P. 2463. https://www.doi.org/10.1002/ADMA.200802849
  12. 12. Han S.H., Kim K.S., Kim H.G., Lee H.G., Kang H.W., Kim J.S., Il Cheon C. // Ceram. Int. 2010. V. 36. P. 1365. https://www.doi.org/10.1016/J.CERAMINT.2010.01.020
  13. 13. Soltani T., Entezari M.H. // Chem. Eng. J. 2013. V. 223. P. 145. https://www.doi.org/10.1016/J.CEJ.2013.02.124
  14. 14. Soltani T., Entezari M.H. // Chem. Eng. J. 2014. V. 251. P. 207. https://www.doi.org/10.1016/J.CEJ.2014.04.021
  15. 15. Soltani T., Entezari M.H. // Ultrason. Sonochem. 2013. V. 20. P. 1245. https://www.doi.org/10.1016/J.ULTSONCH.2013.01.012
  16. 16. Haruna A., Abdulkadir I., Idris S.O. // Heliyon. 2020. V. 6. P. e03237. https://www.doi.org/10.1016/J.HELIYON.2020.E03237
  17. 17. Nassereddine Y., Benyoussef M., Asbani B., El Marssi M., Jouiad M. // Nanomater. 2024. V. 14 Iss. 1. P. 51. https://www.doi.org/10.3390/NANO14010051
  18. 18. Huo Y., Jin Y., Zhang Y. // J. Mol. Catal. A Chem. 2010. V. 331. P. 15. https://www.doi.org/10.1016/J.MOLCATA.2010.08.009
  19. 19. Duan Q., Kong F., Han X., Jiang Y., Liu T., Chang Y., Zhou L., Qin G., Zhang X. // Mater. Res. Bull. 2019. V. 112. P. 104. https://www.doi.org/10.1016/J.MATERRESBULL.2018.12.012
  20. 20. Abdul Satar N.S., Adnan R., Lee H.L., Hall S.R., Kobayashi T., Mohamad Kassim M.H., Mohd Kaus N.H. // Ceram. Int. 2019. V. 45. P. 15964. https://www.doi.org/10.1016/J.CERAMINT.2019.05.105
  21. 21. Li Z., Dai W., Bai L., Wang Y., Ma D., Peng Y., Deng Z., Xie Y., Liu B., Zhang G., Wang X., Zhu L. // J. Alloys Compd. 2023. V. 968. P. 171863. https://www.doi.org/10.1016/J.JALLCOM.2023.171863
  22. 22. Orudzhev F.F., Alikhanov N.M.R., Ramazanov S.M., Sobola D.S., Murtazali R.K., Ismailov E.H., Gasimov R.D., Aliev A.S., Ţălu Ş. // Mol. 2022. V. 27. P. 7029. https://www.doi.org/10.3390/MOLECULES27207029
  23. 23. Irfan S., Li L., Saleemi A.S., Nan C.W. // J. Mater. Chem. A. 2017. V. 5. P. 11143. https://www.doi.org/10.1039/C7TA01847A
  24. 24. Yang R., Sun H., Li J., Li Y. // Ceram. Int. 2018. V. 44. P. 14032. https://www.doi.org/10.1016/J.CERAMINT.2018.04.256
  25. 25. Lu Z., Xie T., Wang L., Li L., Cao C., Mo C. // Opt. Mater. (Amst). 2022. V. 134. P. 113185. https://www.doi.org/10.1016/J.OPTMAT.2022.113185
  26. 26. Mandal G., Goswami M.N., Mahapatra P.K. // Phys. B Condens. Matter. 2024. V. 695. P. 416475. https://www.doi.org/10.1016/J.PHYSB.2024.416475
  27. 27. Soltani T., Lee B.K. // J. Hazard. Mater. 2016. V. 316. P. 122. https://www.doi.org/10.1016/J.JHAZMAT.2016.03.052
  28. 28. Dubey A., Schmitz A., Shvartsman V.V., Bacher G., Lupascu D.C., Castillo M.E. // Nanoscale Adv. 2021. V. 3. P. 5830. https://www.doi.org/10.1039/D1NA00420D
  29. 29. Li P., Lin Y.-H., Nan C.-W. // J. Appl. Phys. 2011. V. 110. P. 033922. https://www.doi.org/10.1063/1.3622564
  30. 30. Abdelmadjid K., Gheorghiu F., Abderrahmane B. // Mater. 2022. V. 15. P. 961. https://www.doi.org/10.3390/MA15030961
  31. 31. Zhang Y., Yang Y., Dong Z., Shen J., Song Q., Wang X., Mao W., Pu Y., Li X. // J. Mater. Sci. Mater. Electron. 2020. V. 31. P. 15007. https://www.doi.org/10.1007/S10854-020-04064-5
  32. 32. Alikhanov N.M.R., Rabadanov M.K., Orudzhev F.F., Gadzhimagomedov S.K., Emirov R.M., Sadykov S.A., Kallaev S.N., Ramazanov S.M., Abdulvakhidov K.G., Sobola D. // J. Mater. Sci. Mater. Electron. 2021. V. 32. P. 13323. https://www.doi.org/10.1007/S10854-021-05911-9
  33. 33. Shannon R.D. // Foundations of Crystallography. 1976. V. 32. Iss. 5. P. 751. https://www.doi.org/10.1107/S0567739476001551
  34. 34. Fukumura H., Harima H., Kisoda K., Tamada M., Noguchi Y., Miyayama M. // J. Magn. Magn. Mater. 2007. V. 310. P. e367. https://www.doi.org/10.1016/J.JMMM.2006.10.282
  35. 35. Bielecki J., Svedlindh P., Tibebu D.T., Cai S., Eriksson S.G., Borjesson L., Knee C.S. // Phys. Rev. B. 2012. V. 86. P. 184422. https://www.doi.org/10.1103/PHYSREVB.86.184422
  36. 36. Park T.J., Papaefthymiou G.C., Viescas A.J., Moodenbaugh A.R., Wong S.S. // Nano Lett. 2007. V. 7. P. 766. https://www.doi.org/10.1021/NL063039W
  37. 37. Hermet P., Goffinet M., Kreisel J., Ghosez P. // Phys. Rev. B. 2007. V. 75. P. 220102. https://www.doi.org/10.1103/PHYSREVB.75.220102
  38. 38. Suresh S., Kathirvel A., Uma Maheswari A., Sivakumar M. // Mater. Res. Exp. 2019. V. 6. P. 115057. https://www.doi.org/10.1088/2053-1591/AB45A8
  39. 39. Sivakumar A., Dhas S.S.J., Almansour A.I., Kumar R.S., Arumugam N., Perumal K., Dhas S.A.M.B. // Appl. Phys. A Mater. Sci. Process. 2021. V. 127. P. 1. https://www.doi.org/10.1007/S00339-021-05059-7
  40. 40. Hui J., Hushur A., Hasan A. // Phys. Solid State. 2024. V. 66. P. 318. https://www.doi.org/10.1134/S1063783424600985
  41. 41. Soltani T., Lee B.K. // J. Mol. Catal. A Chem. 2016. V. 425. P. 199. https://www.doi.org/10.1016/J.MOLCATA.2016.10.009
  42. 42. Makhdoom A.R., Akhtar M.J., Rafiq M.A., Hassan M.M. // Ceram. Int. 2012. V. 38. Iss. 5. P. 3829. https://www.doi.org/10.1016/j.ceramint.2012.01.032
  43. 43. Dhawan A., Sudhaik A., Raizada P., Thakur S., Ahamad T., Thakur P., Singh P., Hussain C.M. // J. Ind. Eng. Chem. 2023. V. 117. P. 1. https://www.doi.org/10.1016/J.JIEC.2022.10.001
  44. 44. Deng H., Qin C., Pei K., Wu G., Wang M., Ni H., Ye P. // Mater. Chem. Phys. 2021. V. 270. P. 124796. https://www.doi.org/10.1016/J.MATCHEMPHYS.2021.124796
  45. 45. Wang D.H., Goh W.C., Ning M., Ong C.K. // Appl. Phys. Lett. 2006. V. 88. P. 212907. https://www.doi.org/10.1063/1.2208266/331724
  46. 46. Subramanian Y., Ramasamy V., Karthikeyan R.J., Srinivasan, G.R., Arulmozhi, D., Gubendiran R.K., Sriramalu M. // Heliyon. 2019. V. 5. Iss. 6. P. e01831. https://www.doi.org/10.1016/j.heliyon.2019.e01831
  47. 47. Sun Q., Hong Y., Liu Q., Dong L. Appl. Sur. Sci. 2018. V. 430. P. 399. https://www.doi.org/10.1016/j.apsusc.2017.08.085
  48. 48. Volnistem E.A., Bini R.D., Silva D.M., Rosso J.M., Dias G.S., Cotica L.F., Santos I.A. // Ceram. Inter. 2020. V. 46. Iss. 11. P. 18768. https://www.doi.org/10.1016/j.ceramint.2020.04.194
  49. 49. Zhao W., Wang Y., Yang Y., Tang J., Yang Y. // Appl. Catal. B: Environmental. 2012. V. 115. P. 90. https://www.doi.org/10.1016/j.apcatb.2011.12.018
  50. 50. Alijani H., Abdouss M., Khataei H. // Diamond and Related Materials. 2022. V. 122. P. 108817. https://www.doi.org/10.1016/j.diamond.2021.108817
  51. 51. Bagherzadeh M., Kaveh R., Ozkar S., Akbayrak S. // Res. Chem. Interm. 2018. V. 44. P. 5953. https://www.doi.org/10.1007/s11164-018-3466-1
  52. 52. Balasubramanian V., Kalpana S., Anitha R., Senthil T.S. // Mater. Sci. Semiconductor Processing. 2024. V. 182. P. 108732. https://www.doi.org/10.1016/j.mssp.2024.108732
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library