RAS PhysicsПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

Ction of a High-Power Ion Beam of Nanosecond Duration on Commercial AlN Ceramics

PII
S30345731S1028096025030095-1
DOI
10.7868/S3034573125030095
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
57-61
Abstract
The fracture and change in elemental composition of the surface layers of aluminium nitride ceramics under the action of a high-power ion beam of nanosecond duration have been studied. The spatial characteristics of surface fracture have been determined. The destruction occurs mainly along the boundaries of particles (crystallites) from which the ceramics is sintered. Complete removal of some of these particles from the surface layer is observed both after single and multiple irradiations with a current density of 150 A/cm. The formation of hemispherical droplets of various sizes is detected both on the irradiated surface of the ceramics and on the surface after removal of the fracture fragment (after multiple irradiation). Depletion of the surface layer of the ceramics in nitrogen has been established. Possible mechanisms of the observed changes in the surface layer of the ceramics are discussed.
Keywords
мощный ионный пучок алюмонитридная керамика морфология поверхности плавление элементный состав
Date of publication
15.09.2024
Year of publication
2024
Number of purchasers
0
Views
41

References

  1. 1. Anandkumar M., Trofimov E. // J. Alloys Compd. 2023. V. 960. P. 170690. http://doi/org/10.1016/j.jallcom.2023.170690
  2. 2. Vaiani L., Boccaccio A., Uva A.E., Palumbo G., Piccininni A., Guglielmi P., Cantore S., Santacroce L., Charitos I.A., Ballini A. // J. Funct. Biomater. 2023. V. 14. P. 146. http://doi/org/10.3390/jfb14030146
  3. 3. Nisar A., Hassan R., Agarwal A., Balani K. // Ceram. Int. 2022. V. 48. P. 8852. http://doi/org/10.1016/j.ceramint.2021.12.199
  4. 4. Sokovkin S.Yu., Balezin M.E. // Nucl. Instrum. Methods Phys. Res. B. 2020. V. 978. P. 164466. http://doi/org/10.1016/j.nima.2020.164466
  5. 5. Ebert J.N., Rheinheimer W. // Open Ceram. 2022. V. 11. P. 100280. http://doi/org/10.1016/j.oceram.2022.100280
  6. 6. Lizcano M., Williams T.S., Shin E.-S.E., Santiago, D., Nguyen B. // Materials. 2022. V. 15. P. 8121. http://doi/org/10.3390/ma15228121
  7. 7. Remnev G.E., Isakov I.F., Opekounov M.S. et al. // Surf. Coat. Technol. 1999. V. 114. P. 206. http://doi/org/10.1016/S0257-8972 (99)00058-4
  8. 8. Remnev G.E., Tarbokov V.A., Pavlov S.K. // Inorg. Mater. Appl. Res. 2022. V. 13. P. 62. http://doi/org/10.1134/S2075113322030327
  9. 9. Uglov V.V., Remnev G.E., Kuleshov A.K., Astashinski V.M., Saltymakov M.S. // Surf. Coat. Technol. 2010. V. 204. P. 1952. http://doi/org/10.1016/j.surfcoat.2009.09.039
  10. 10. Kovivchak V.S., Panova T.V., Burlakov R.B. // J. Surf. Invest. X-Ray, Synchrotron, Neutron Tech. 2008. V. 2. P. 200. http://doi/org/10.1134/S1027451008020079
  11. 11. Kovivchak V.S., Panova T.V., Krivozubov O.V., Davletkil’deev N.A., Knyazev E.V. // J. Surf. Invest. X-Ray, Synchrotron, Neutron Tech. 2012. V. 6. P. 244. http://doi/org/10.1134/S1027451012030123
  12. 12. Kovivchak V.S., Panova T.V. // J. Surf. Invest. X-Ray, Synchrotron, Neutron Tech. 2019. V. 13. P. 1252. http://doi/org/10.1134/S1027451019060363
  13. 13. Liang G., Shen J., Zhang J. et al. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 409. P. 277. http://doi/org/10.1016/j.nimb.2017.04.048
  14. 14. Shen J., Shahid I., Yu X. et al. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 413. P. 6. http://doi/org/10.1016/j.nimb.2017.09.031
  15. 15. Romanov I.G., Tsareva I.N. // Tech. Phys. Lett. 2001. V. 27. P. 695. http://doi/org/10.1134/1.1398972
  16. 16. Nakano H., Watari K., Hayashi H., Urabe K. // J. Am. Ceram. Soc. 2004. V. 85. P. 3093. http://doi/org/10.1111/j.1151-2916.2002.tb00587.x
  17. 17. De Faoite D., Browne D.J., Chang-Díaz F.R. et al. // J. Mater. Sci. 2012. V. 47. P. 4211. http://doi/org/10.1007/s10853-011-6140-1
  18. 18. Goldstein J.I., Newbury D.E., Echlin P. et al. Scanning Electron Microscopy and X-Ray Microanalysis. New York: Kluwer acad. /Plenum publ., 2003. 689 p.
  19. 19. Ghyngazov S., Pavlov S., Kostenko V., Surzhikov A. // Nucl. Instrum. Methods Phys. Res. B. 2018. V. 434. P. 120. http://doi/org/10.1016/j.nimb.2018.08.037
  20. 20. Kostenko V., Pavlov S., Nikolaeva S. // IOP Conf. Ser.: Mater. Sci. Eng. 2018. V. 289. P. 012019. http://doi/org/10.1088/1757-899X/289/1/012019
  21. 21. Ghyngazov S.А., Boltueva V.А. // Ceram. Int. 2023. V. 49. P. 37061. http://doi/org/10.1016/j.ceramint.2023.09.099
  22. 22. Ghyngazov S., Kostenko V., Shevelev S., Lysenko E., Surzhikov A. // Nucl. Instrum. Methods Phys. Res. B. 2020. V. 464. P. 89. http://doi/org/10.1016/j.nimb.2019.12.013
  23. 23. Zhang S., Yu X., Zhang J. et al. // Vacuum. 2021. V. 187. P. 110154. http://doi/org/10.1016/j.vacuum.2021.110154
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library