RAS PhysicsПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

Modification of Bentonite Properties with Iron Oxide Nanoparticles

PII
S30345731S1028096025030055-1
DOI
10.7868/S3034573125030055
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
30-38
Abstract
Powdered materials based on bentonite and a mixed solid solution magnetite/maghemite were synthesized by the chemical coprecipitation method. Scanning electron microscopy, X-ray phase analysis, magnetic measurements, and nuclear γ-resonance spectroscopy were used to characterize the surface and study the physicochemical properties of the resulting compounds. It has been found that bentonite affects the point defects in the magnetite/maghemite crystal lattice, as well as the crystallite size and dislocation density. It has been shown that samples of the bentonite/iron oxide composite are characterized by lower residual magnetization and higher values of the effective anisotropy field strength compared to those detected for FeO/γ-FeO powder. Based on the Mössbauer spectroscopy data, a conclusion has been made about the localization of Fe ions in the bentonite structure near oxygen vacancies that form octahedral positions.
Keywords
магнетит маггемит бентонит электронная микроскопия рентгенофазовый анализ дефектность намагниченность эффект Мессбауэра
Date of publication
29.08.2024
Year of publication
2024
Number of purchasers
0
Views
71

References

  1. 1. Awad A.M., Shaikh S.M.R., Jalab R., Gulied M.H., Nasser M.S., Benamor A., Adham S. // Sep. Purif. Technol. 2019. V. 228. P. 115719. https://doi.org/10.1016/j.seppur.2019.115719
  2. 2. Huilin Z., Xiaoyu L., Chao Y., Niu C., Wang J., Xintai Su X. // J. Alloys Compd. 2016. V. 688. P. https://1019.doi.org/10.1016/j.jallcom.2016.07.036
  3. 3. Кафеева Д.А., Куршанов Д.А., Дубовик А.Ю. // Изв. РАН. Сер. физ. 2023. T. 87. № 6. C. 801. https://doi.org/10.31857/S0367676523701399
  4. 4. Магомедов К.Э., Омельянчик А.С., Воронцов С.А., Чижмар Э., Родионова В.В., Левада Е.В. // Изв. РАН. Сер. физ. 2023. т. 87. № 6. с. 819. https://doi.org/10.31857/S0367676523701429
  5. 5. Шипко М.Н., Cтепович М.А., Носков А.В., Алексеева О.В., Смирнова Д.Н. // Изв. РАН. Сер. физ. 2022. Т. 86. № 9. С. 1222. https://doi.org/10.31857/S0367676522090289
  6. 6. Алексеева О.В., Шипко М.Н., Смирнова Д.Н., Носков А.В., Агафонов А.В., Степович М.А. // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2022. №3. С. 23. https://doi.org/10.31857/S1028096022030025
  7. 7. Bakandritsos A., Simopoulos A., Petridis D. // Nanotechnology. 2006. V. 17. № 4. P. 1112. https://doi.org/10.1088/0957-4484/17/4/044
  8. 8. Сапаргалиев Е.М. // Изв. НАН Респ. Казахстан. Геология Казахстана. 2003. № 3. С. 64.
  9. 9. Carriazo J.G., Centeno M.A., Odriozola J.A., Moreno S., Molina R. // Appl. Catal. A. Gen. 2007. V. 317. № 1. P. 120. https://doi.org/10.1016/j.apcata.2006.10.009
  10. 10. Tireli A.A., Guimarães I.R., Terra J.C.S, da Silva R.R., Guerreiro M.C. // Environ. Sci. Pollut. Res. 2015. V. 22. P. 870. https://doi.org/10.1007/s11356-014-2973-x
  11. 11. Алексеева О.В., Смирнова Д.Н., Носков А.В., Кузнецов О.Ю., Кириленко М.А., Агафонов А.В. // Журн. неорган. химии. 2023. Т. 68. № 8. С. 1021. https://doi.org/10.31857/S0044457X23600299
  12. 12. Yan L., Li S., Yu H., Shan R., Du B., Liu T. // Powder Technol. 2016. V. 301. P. 632. https://doi.org/10.1016/j.powtec.2016.06.051
  13. 13. Курмангажи Г., Тажибаева С.М., Мусабеков К.Б., Левин И.С., Кузин М.С., Ермакова Л.Э., Ю В.К. // Коллоидн. журн. 2021. Т. 83. № 3. С. 320. https://doi.org/10.31857/S0023291221030095
  14. 14. Annamária M., Zuzana O., Jirí S. // J. Hazard. Mater. 2010. V. 180. № 1-3. P. 274. https://doi.org/10.1016/j.jhazmat.2010.04.027
  15. 15. Nirmla D., Joydeep D. // Int. J. Biol. Macromol. 2017. V. 104. P. 1897. https://doi.org/10.1016/j.ijbiomac.2017.02.080
  16. 16. Лыгина Т.З., Сабитов А.А., Трофимова Ф.А. Бентониты и бентонитоподобные глины: классификация, особенности состава, физико-химические и технологические свойства. Казань: ЦНИИгелнеруд, 2005. 72 с.
  17. 17. Архипов Р.В., Гизатуллин Б.И., Дулов Е.Н., Ивойлов Н.Г. // Вестн. Казан. технол. ун-та. 2011. № 10. С. 79.
  18. 18. Шилова О.А., Николаевa А.М., Коваленко А.С., Синельников А.А., Копица Г.П., Баранчиков А.Е. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 398. https://doi.org/10.31857/S0044457X20030137
  19. 19. Алексеев В.П., Рыбникова Е.В., Шипилин М.А. // Вестн. ЯрГУ. Сер. Естественные и технические науки. 2012. № 4. С. 10.
  20. 20. Cervellino A., Frison R., Cernuto G., Guagliardi A., Masciocchi N. // J. Appl. Crystallogr. 2014. V. 47. № 5. P. 1755. https://doi.org/10.1107/S1600576714019840
  21. 21. Шаров М.К., Кабанова К.А. // Физика и техника полупроводников. 2014. Т. 48. № 11. С. 1441.
  22. 22. Sabur M.A., Gafur M.A. // J. Nanomater. 2024. V. 2024. Р. 9577778. https://doi.org/10.1155/2024/9577778
  23. 23. Эйриш М.В., Башкиров Ш.Ш., Пермяков Е.Н. // Тр. IV Всесоюзн. симп. по изоморфизму. Элиста: Калмыцкий университет, 1977. С. 90.
  24. 24. Пермяков Е.Н., Эйриш М.В. // Прикладная геохимия. Вып. 4. Аналитические исследования. М.: ИМГРЭ, 2003. С. 269.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library