- Код статьи
- S30345731S1028096025020118-1
- DOI
- 10.7868/S3034573125020118
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 2
- Страницы
- 79-90
- Аннотация
- Исследовано влияние размера зерен и текстуры поликристаллического вольфрама на коэффициент распыления и морфологию поверхности при высокодозном облучении ионами Ar с энергией 30 кэВ. В эксперименте использовали образцы со средним размером зерен от 300 нм до 7 мкм, бестекстурные и с текстурой [001]. Показано, что ионно-индуцированная морфология поверхности сильно зависит от размера зерен и флуенса облучения. Размер зерен слабо (менее 10%) влияет на коэффициент распыления, в то время как текстура может двукратно снизить коэффициент распыления. Эксперимент с варьированием угла падения ионного пучка показал, что причиной двукратного снижения коэффициента распыления для текстурированных образцов является эффект каналирования. Проведен анализ влияния рельефа поверхности на коэффициент распыления. Предложено выражение, учитывающее перепыление атомов и отражение ионов, для прогнозирования коэффициента распыления поверхности с ионно-индуцированным рельефом.
- Ключевые слова
- вольфрам интенсивная пластическая деформация кручение под высоким давлением ультрамелкозернистая структура текстура ионное облучение Ar [Ar] конусы коэффициент распыления моделирование перепыление каналирование
- Дата публикации
- 25.11.2024
- Год выхода
- 2024
- Всего подписок
- 0
- Всего просмотров
- 32
Библиография
- 1. Guseva M.I., Martynenko Yu.V. // Sov. Phys. Usp. 1981. V. 24. P. 996. https://doi.org/10.1070/PU1981v024n12ABEH004758
- 2. Martynenko Yu.V., Nagel M.Yu. // Plasma Phys. Rep. 2012. V. 38. P. 996. https://doi.org/10.1134/S1063780X12110074
- 3. Kajita S., Kawaguchi S., Ohno N., Yoshida N. // Sci. Rep. 2018. V. 8. Р. 56. https://doi.org/10.1038/s41598-017-18476-7
- 4. Harutyunyan Z.R., Ogorodnikova O.V., Aksenova A.S., Gasparyan Yu.M., Efimov V.S., Kharkov M.M., Kaziev A.V., Volkov N.V. // J. Surf. Invest: X-Ray, Synchrotron Neutron Tech. 2020. V. 14. № 6. P 1248. https://doi.org/10.1134/S1027451020060245
- 5. Budaev V.P., Fedorovich S.D., Dedov A.V., Karpov A.V., Martynenko Yu.V., Kavyrshin D.I., Gubkin M.K., Lukashevsky M.V., Lazukin A.V., Zakharenkov A.V., Sliva A.P., Marchenkov A.Yu., Budaeva M.V., Tran Q.V., Rogozin K.A., Konkov A.A., Vasilyev G.B., Burmistrov D.A., Belousov S.V. // Plasma Discharge. Fusion Sci. Technol. 2023. V. 79. Iss. 4. P. 404. https://doi.org/10.1080/15361055.2022.2118471
- 6. Efe M., El-Atwani O., Guo Y, Klenosky D.R. // Scr. Mater. 2014. V. 70. P. 31. https://doi.org/10.1016/j.scriptamat.2013.08.013
- 7. El-Atwani O., Hattar K., Hinks J.A., Greaves G., Harilal S.S., Hassanein A. // J. Nucl. Mater. 2015. V. 458. P. 216. http://doi.org/10.1016/j.jnucmat.2014.12.095
- 8. Chen Z., Niu L-L., Wang Z., Tian L., Kecskes L, Zhu K., Wei Q. // Acta Mater. 2018. V. 147. P. 100. https://doi.org/10.1016/j.actamat.2018.01.015
- 9. Wu Y-C., Hou Q-Q., Luo L-M., Zan X., Zhu X-Y., Li P., Xu Q., Cheng J-G., Luo G-N., Chen J-L. // J. Alloys Compd. 2019. V. 779. P. 926. https://doi.org/10.1016/j.jallcom.2018.11.279
- 10. El-Atwani O., Cunningham W.S., Perez D., Martinez E., Trelewicz J.R., Li M., Maloy S.A. // Scr. Mater. 2020. V. 180. P. 6. https://doi.org/10.1016/j.scriptamat.2020.01.013
- 11. Qian W., Wei R., Zhang M., Chen P., Wang L., Liu X., Chen J., Ni W., Zheng P. // Mater. Lett. 2022. V. 308. P. 130921. https://doi.org/10.1016/j.matlet.2021.130921
- 12. Wurmshuber M., Doppermann S., Wurster S., Jakob S., Balooch M., Alfreider M., Schmuck K., Bodlos R., Romaner L., Hosemann P., Clemens H., Maier-Kiener V., Kiener D. // Int. J. Refract. Met. Hard Mater. 2023. V. 111. P. 106125. https://doi.org/10.1016/j.ijrmhm.2023.106125
- 13. Michaluk C.A. // J. Electron. Mater. 2002. V. 31. P. 2. https://doi.org/10.1007/s11664-002-0165-9
- 14. Voitsenya V.S., Balden M., Bardamid A.F., Bondarenko V.N., Davis J.W., Konovalov V.G., Ryzhkov I.V., Skoryk O.O., Solodovchenko S.I., Zhangjian Z. // Nucl. Instrum. Methods Phys. Res. B. 2013. V. 302. P. 32. https://doi.org/10.1016/j.nimb.2013.03.005
- 15. Yang W., Zhao G., Wang Y., Wang S., Zhan S., Wang D., Bao M., Tang B., Yao L., Wang X. // J. Mater. Sci.: Mater. Electron. 2021. V. 32. P. 26181. https://doi.org/10.1007/s10854-021-06645-4
- 16. Andrianova N.N., Borisov A.M., Ovchinnikov M.A., Khisamov R.Kh., Mulyukov R.R. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2024. V. 18. P. 305. https://doi.org/10.1134/S1027451024020046
- 17. Andrianova N.N., Borisov A.M., Ovchinnikov M.A., Khisamov R.Kh, Mulyukov R.R. // Bull.Russ. Acad. Sci. Phys. 2024. V. 88. P. 478. https://doi.org/10.1134/S1062873823706141
- 18. Mulyukov R.R. // J. Vac. Sci. Technol. B. 2006. V. 24. P. 1061. https://doi.org/10.1116/1.2174024
- 19. Zhang Y., Ganeev A.V., Wang J.T., Liu J.Q., Alexandrov I.V. // Mater. Sci. Eng. A. 2009. V. 503. P. 37. https://doi.org/10.1016/j.msea.2008.07.074
- 20. Németh A.A.N., Reiser J., Armstrong D.E.J., Rieth M. // Int. J. Refract. Met. Hard Mater. 2015. V. 50. P. 9. https://doi.org/10.1016/j.ijrmhm.2014.11.005
- 21. Bonnekoh C., Lied P., Pantleon W., Karcher T., Leiste H., Hoffmann A., Reiser J., Rieth M. // Int. J. Refract. Met. Hard Mater. 2020. V. 93. P. 105347. https://doi.org/10.1016/j.ijrmhm.2020.105347
- 22. Oh Y., Ko W.-S., Kwak N., Jang J., Ohmura T., Han H.N. // J. Mater. Sci. Technol. 2022. V. 105. P. 242. https://doi.org/10.1016/j.jmst.2021.07.024
- 23. Khisamov R.Kh., Andrianova A.A., Borisov A.M., Ovchinnikov M.A., Timiryaev R.R., Musabirov I.I., Mulyukov R.R. // Phys. At. Nucl. 2023. V. 86. № 10. P. 2198. https://doi.org/10.1134/S1063778823100228
- 24. Markushev M.V., Avtokratova E.V., Krymskiy S.V., Tereshkin V.V., Sitdikov O.Sh. // Lett. Mater. 2022. V. 12. Iss. 4s. P. 463. https://doi.org/10.22226/2410-3535-2022-4-463-468
- 25. Yusupova N.R., Krylova K.A., Mulyukov R.R. // Lett. Mater. 2023. V. 13. Iss. 3. P. 255. https://doi.org/10.22226/2410-3535-2023-3-255-259
- 26. Mulyukov R.R., Khisamov R.Kh., Borisov A.M., Baimiev A.Kh., Ovchinnikov M.A., Timiryaev R.R., Vladimirova A.A. // Lett. Mater. 2023. V. 13. Iss. 4. P. 373. https://doi.org/10.22226/2410-3535-2023-4-373-376
- 27. Xue K., Guo Y., Zhou Y., Xu B., Li P. // Int. J. Refr. Met. Hard Mater. 2021. V. 94. P. 105377. https://doi.org/10.1016/j.ijrmhm.2020.105377
- 28. Mashkova E.S., Molchanov V.A. Medium-Energy Ion Reflection from Solids. Amsterdam: North-Holland, 1985. 444 p.
- 29. Ziegler J.F., Biersack J.P. SRIM, 2013. http://www.srim.org
- 30. Sun M., Ding C., Xu J., Shan D., Guo B., Langdon T.G. // Crystals. 2023. V. 13. P. 887. https://doi.org/10.3390/cryst13060887
- 31. Bradley R.M., Harper J.M.E. // J. Vac. Sci. Technol. A. 1988. V. 6. P. 2390. https://doi.org/10.1116/1.575561
- 32. Chan W.L., Chason E. // J. Appl. Phys. 2007. V. 101. P. 121301. https://doi.org/10.1063/1.2749198
- 33. Littmark U., Hofer W.O. // J. Mater. Sci. 1978. V. 13. P. 2577. https://doi.org/10.1007/BF00552687
- 34. Kustner M., Eckstein W., Dose V., Roth J. // Nucl. Instrum. Methods Phys. Res. B. 1998. V. 145. P. 320. https://doi.org/10.1016/S0168-583X (98)00399-1
- 35. Makeev M.A., Barabasi A.-L. // Nucl. Instrum. Methods Physics. Res. B. 2004. V. 222. P. 316. https://doi.org/10.1016/j.nimb.2004.02.027.
- 36. Stadlmayr R., Szabo P.S., Berger B.M., Cupak C., Chiba R., Blöch D., Mayer D., Stechauner B., Sauer M., Foelske-Schmitz A., Oberkofler M., Schwarz-Selinger T., Mutzke A., Aumayr F. // Nucl. Instrum. Methods Phys. Res. B. 2018. V. 430. P. 42. https://doi.org/10.1016/j.nimb.2018.06.004
- 37. Shulga V.I. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2020. V. 14. P. 1346. https://doi.org/10.1134/S1027451020060440
- 38. Borisov A.M., Mashkova E.S., Ovchinnikov M.A., Khisamov R.K., Mulyukov R.R. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2021. V. 15. P. S66. https://doi.org/10.31857/S1028096022030062
- 39. Borisov A.M., Mashkova E.S., Ovchinnikov M.A., Khisamov R.K., Mulyukov R.R. // Tech. Phys. Lett. 2022. V. 48. Iss. 6. P. 55. https://doi.org/10.21883/TPL.2022.06.53792.19146
- 40. Bradley R.M., Hobler G. // J. Appl. Phys. 2023. V. 133. P. 065303. https://doi.org/10.1063/5.0137324
- 41. Kwon T.H., Park S., Ha J.M., Youn Y-S. // Nucl. Eng. Technol. 2021. V. 53. Iss. 6. P. 1939. https://doi.org/10.1016/j.net.2020.12.024
- 42. Shermukhamedov S., Probst M. // Phys. Plasmas. 2023. V. 30. P. 123901. https://doi.org/10.1063/5.0167840
- 43. Cupak C., Szabo P.S., Biber H., Stadlmayr R., Grave C., Fellinger M., Brötzner J., Wilhelm R.A., Möller W., Mutzke A., Moro M.V., Aumayr F. // Appl. Surf. Sci. 2021. V. 570. P. 151204. https://doi.org/10.1016/j.apsusc.2021.151204
- 44. Szabo P.S., Cupak C., Biber H., Jaggi N., Galli A., Wurz P., Aumayr F. // Surf.Interfaces. 2022. V. 30. P. 101924. https://doi.org/10.1016/j.surfin.2022.101924
- 45. Diddens C., Linz S.J. // Eur. Phys. J. B. 2015. V. 88. P. 190. https://doi.org/10.1140/epjb/e2015-60468-7
- 46. Behrisch R., Eckstein W. Sputtering by Particle Bombardment. Heidelberg-Berlin: Springer-Verlag, 2007. 509 p. DOI:10.1007/978-3-540-44502-9
- 47. Matsunami N., Yamamura Y., Itikawa Y., Itoh N., Kazumata Y., Miyagawa S., Morita K., Shimizu R., Tawara H. // At. Data Nucl. Data Tables. 1984. V. 31. Iss. 1. P. 1. https://doi.org/10.1016/0092-640X (84)90016-0
- 48. Mikhailov V.S., Babenko P.Yu., Shergin A.P., Zinoviev A.N. // Plasma Phys. Rep. 2024. V. 50. Iss. 1. P. 23. https://doi.org/10.1134/S1063780X23601682
- 49. Mahne N., Čekada M., Panjan M. // Coatings. 2022. V. 12. P. 1541. https://doi.org/10.3390/coatings12101541
- 50. Carter G. // J. Phys. D. 2001. V. 34. P. R1. https://doi.org/10.1088/0022-3727/34/3/201
- 51. Behrisch R. Sputtering by Particle Bombardment I. Berlin-Heidelberg-New York: Springer-Verlag, 1981. 281 p.
- 52. Vantomme A. // Nucl. Instrum. Methods Phys. Res. B. 2016. V. 371. P. 12. https://doi.org/10.1016/j.nimb.2015.11.035
- 53. Nagasaki T., Hirai H., Yoshino M., Yamada T. // Nucl. Instrum. Methods Phys. Res. B. 2018. V. 418. P. 34. https://doi.org/10.1016/j.nimb.2017.12.023
- 54. Eckstein W., Mashkova E.S., Molchanov V.A., Sidorov A.V., Zhukova Yu.N. // Appl. Phys. A. 1993. V. 57. P. 271. https://doi.org/10.1007/BF00332602