ОФНПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

ТЕМПЕРАТУРНЫЕ И ЭНЕРГЕТИЧЕСКИЕ ЗАКОНОМЕРНОСТИ ИОННО-ЛУЧЕВОГО МОДИФИЦИРОВАНИЯ ВЫСОКООРИЕНТИРОВАННОГО ПИРОЛИТИЧЕСКОГО ГРАФИТА

Код статьи
S30345731S1028096025020107-1
DOI
10.7868/S3034573125020107
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 2
Страницы
72-78
Аннотация
Экспериментально исследован поверхностный слой высокоориентированного пиролитического графита после облучения ионами аргона с энергий от 10 до 30 кэВ с флуенсом до 10 ион/см в интервале температур мишеней от комнатной до 600°С. Закономерности изменения поверхности облученного слоя сопоставлены с известными закономерностями изменений морфологии и размеров пирографитов при облучении быстрыми реакторными нейтронами. Найдено, что выше критического флуенса ионного облучения высокоориентированного пиролитического графита происходит резкое возрастание амплитуды шероховатости поверхности со столбчато-игольчатой морфологией R на несколько порядков величины больше проективного пробега ионов R. Показано, что температурный интервал, соответствующий максимальным значениям величины амплитуды шероховатости поверхности, близок к температурному интервалу интенсивного радиационного формоизменения графита при нейтронном облучении, приводящего к его вторичному разбуханию. Проведена оценка критического флуенса образования столбчатоигольчатой морфологии при энергии облучения ионами аргона от 10 до 30 кэВ. Измеренные уровни критического флуенса ионов, выраженные в числе радиационных смещений, после их коррекции, с учетом различий эффективности радиационных повреждений нейтронами и ионами, могут быть использованы для оценки стойкости ядерных углеродных материалов с помощью имитационного ионного облучения.
Ключевые слова
высокоориентированный пиролитической графит радиационно-индуцированные изменения размеров ионное облучение спектроскопия комбинационного рассеяния света ионно-индуцированный рельеф растровая электронная микроскопия
Дата публикации
30.09.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
39

Библиография

  1. 1. Виргильев Ю.С., Гундорова Н.И., Куроленкин Е.И., Лебедев Ю.Н., Макарченко В.Г. Непрошиин Е.И., Попелюхина М.И., Харитонов А.В. // Изв. АН СССР. Сер. Неорг. матер. 1980. Т. 16. № 4. С. 669.
  2. 2. Виргильев Ю.С., Гундорова Н.И., Куроленкин Е.И., Непрошин Е.И., Харитонов А.В. // Физ. и хим. обраб. матер. 1982. № 2. С. 3.
  3. 3. Brocklehurst J.E, Kelly B.T. // Carbon. 1993. V. 31. № 1. P. 179. https://www.doi.org/10.1016/0008-6223 (93)90170-F
  4. 4. Виргильев Ю.С., Чугунова Т.К., Макарченко В.Г., Муравьева Е.В. // Изв. АН СССР. Сер. Неорг. матер. 1984. Т. 20. № 8. С. 1378.
  5. 5. Virgil’ev Yu.S., Kalyagina I.P. // Inorg. Mater. 2004. V. 40. P. S33. https://www.doi.org/10.1023/B:INMA.0000036327.90241.5a
  6. 6. Was G.S., Jiao Z., Getto E., Sun K., Monterrosa A.M., Maloy S.A., Anderoglu O., Sencer B.H., Hackett M. // Scripta Materialia. 2014. V. 88. P. 33. https://www.doi.org/10.1016/j.scriptamat.2014.06.003
  7. 7. Вас Г.С., Основы радиационного материаловедения. Металлы и сплавы. М.: Техносфера, 2014. 992 с.
  8. 8. Liu D., Cherns D., Johns S., Y. Zhou, J. Liu, W.-Y. Chen, I. Griffiths, C. Karthik, M. Li, M. Kuball, J. Kane, W. Windes // Carbon. 2021. V. 173 P. 215. https://www.doi.org/10.1016/j.carbon.2020.10.086
  9. 9. Telling R.H. Heggie M.I. // Phil. Mag. 2007. V. 87. P. 4797. https://www.doi.org/10.1080/14786430701210023
  10. 10. Андрианова Н.Н., Борисов А.М., Виргильев Ю.С., Машкова Е.С., Севостьянова В.С., Шульга В.И. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2013. № 3. С. 103. https://www.doi.org/10.7868/S0207352813030050
  11. 11. Andrianova N.N., Borisov A.M., Mashkova E.S., Sevostyanova V.S., Virgiliev Yu.S. // Nucl. Instrum. Meth. Phys. Res. B. 2013. V. 315. P. 117. https://www.doi.org/10.1016/j.nimb.2013.04.014
  12. 12. Андрианова Н.Н., Борисов А.М., Виргильев Ю.С., Машкова Е.С., Севостьянова В.С. // Изв. РАН. Сер. физ. 2014. Т. 78. № 6. С. 723. https://www.doi.org/10.7868/S0367676514060052
  13. 13. Mashkova E.S., Molchanov V.A. Medium-Energy Ion Reflection from Solids. Amsterdam: North-Holland, 1985. 444 p.
  14. 14. Burchell T.D. Eatherly W.P. // J. Nucl. Mater. 1991. V. 179-181. P. 205.
  15. 15. Платонов П.А., Штромбах Я.И., Карпухин В.И., Виргильев Ю.С., Чугунов О.К., Трофимчук Е.И. Действие излучения на графит высокотемпературных газоохлаждаемых реакторов. // Атомноводородная энергетика и технология: Сб статей. Вып. 6. М.: Энергоатомиздат, 1984. С. 77.
  16. 16. Ferrari A.C., Robertson J. // Phys. Rev. B. 2000. V. 61. P. 14095. https://www.doi.org/10.1098/rsta.2004.1452
  17. 17. Hbiriq Y., Ammar M. R., Fantini C., L. Hennet, M. Zaghrioui // Phys. Rev. B. 2023. V. 107. P. 134305. https://www.doi.org/10.1103/PhysRevB.107.134305
  18. 18. Pimenta M.A., Dresselhaus G., Dresselhaus M.S., L. G. Cançado, A. Jorio, R. Saito //Phys. Chem. Chem. Phys. 2007. V. 9. № 11. P. 1276. https://www.doi.org/10.1039/B613962K
  19. 19. Larouche N., Stansfield B.L. // Carbon. 2010. V. 48. № 3. P. 620. https://www.doi.org/10.1016/j.carbon.2009.10.002
  20. 20. Kelly B.T. Dimensional changes and lattice parameter changes in graphite crystals due to interstitial atoms and vacancies. // Proc. 2nd Conference on Industrial Carbon and Graphite. Society of Chemical Industry. London. 1965. P. 483.
  21. 21. Burchell T.D. // MRS Bull. 1997. V. 22. P. 29. https://www.doi.org/10.1557/S0883769400033005
  22. 22. Жмуриков Е.И., Бубненков И.А., Дремов В.В., Самарин С.И., Покровский А. С., Харьков Д. В. Графит в науке и ядерной технике. Новосибирск: Изд-во СО РАН, 2013. 163 с.
  23. 23. Andrianova N.N., Avilkina V.S., Borisov A.M., Mashkova E.S., Parilis E.S. // Vacuum. 2012. V. 86. P. 1630. https://www.doi.org/10.1016/j.vacuum.2011.12.010
  24. 24. Andrianova N.N., Borisov A.M., Mashkova E.S., Virgiliev Yu.S. // Nucl. Instrum. Methods Phys. Res. B. 2013. V. 315. P. 240. https://www.doi.org/10.1016/j.nimb.2013.04.011
  25. 25. Ehrhart P., Schilling W., Ullmaier H. // Encyclopedia Appl. Phys. 1996. V. 15. P. 429.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека