RAS PhysicsПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

Electrostatic Discharges During the Joint Impact of Electrons and Electromagnetic Radiation on Glass K-208

PII
S30345731S1028096025020073-1
DOI
10.7868/S3034573125020073
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
53-59
Abstract
Electrostatic discharges and radiation-stimulated leakage currents were studied under separate and combined action of 10-40 keV electrons and solar electromagnetic radiation on K-208 glass samples used as cover glass for solar batteries and reflective elements for spacecraft thermal radiators. The values of the electron flux density (ϕ) were changed in the range of (5 × 10-1 × 10) cm·s, the electromagnetic radiation flux corresponded to one equivalent of solar illumination. Irradiation was carried out in a vacuum of 10 Pa. During irradiation, two types of discharges were observed: the first type is a discharge from a cone-shaped microprotrusion on the glass surface into the surrounding ionized medium; the second type of discharge developed along the irradiated surface leaving about 100 nm wide and up to 2 nm deep discharge channels on it. Discharges of both types were accompanied by plasma emissions and generation of electromagnetic pulses. The dependences of the discharge frequency and leakage currents on the parameter ϕ for electron and combined irradiation were obtained. It was found that for fixed electron energy, discharges of the second type on the samples surface in the case of combined irradiation occur at a lower ϕ value than in the case of electron irradiation. It was also found that with combined action the share of breakdowns of cover glass samples on the conductive substrate in the events recorded in the experiments increases significantly. The share of breakdowns of glass samples also increases with increasing energy of the impacting electrons.
Keywords
электростатический разряд пробой электронное облучение электромагнитное излучение стекло фотоэффект ток утечки частота разрядов фотоэмиссия вторичные электроны ионизация атомно-силовая микроскопия
Date of publication
30.10.2024
Year of publication
2024
Number of purchasers
0
Views
47

References

  1. 1. Norris C.B., Eernisse E.P. // J. Appl. Phys. 1974. V. 45. Iss. 9. P. 3876. https://doi.org/10.1063/1.1663878
  2. 2. Primak W., Kampwirt R. // J. Appl. Phys. 1968. V. 39. Iss. 12. P. 5651. https://doi.org/10.1063/1.1656029
  3. 3. Gavenda T., Gedeon O., Jurek K. // Nucl. Instrum. Methods Phys. Res. B. 2014 V. 322. P. 7. https://doi.org/10.1016/j.nimb.2013.12.017
  4. 4. Ollier N., Boizot B., Reynard B., Ghaleb D., Petite G. // J. Nucl. Mater. 2005. V. 340. P. 209.
  5. 5. Boizot B., Petite G., Ghaleb D., Pellerin N., Fayon F., Reynard B., Calas G. // Nucl. Instrum. Methods Phys. Res. B. 2000. V. 166. P. 500.
  6. 6. Chen L., Wang T.S., Zhang G.F., Yang K.J., Peng H.B., Zhang L.M. // Chin. Phys. B. 2013. V. 22. P. 126101.
  7. 7. Хасаншин Р.Х., Новиков Л.С., Применко Д.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 9. С. 47. https://doi.org/10.31857/S1028096020090113
  8. 8. Хасаншин Р.Х., Новиков Л.С., Коровин С.Б. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2017. № 9. С. 28. https://doi.org/10.7868/S0207352817090049
  9. 9. Ferguson D.C., Wimberly S.C. The Best GEO Daytime Spacecraft Charging Index. // Proc. 50th AIAA Aerospace Sci. Mtg, Dallas, Texas. 2013. P. AIAA 2013-0810. https://doi.org/10.2514/6.2013-810
  10. 10. Messenger S.R., Wong F., Hoang B., Cress C.D., Walters R.J., Kleuver C.A., Jones G. // IEEE Trans. Nucl. Sci. 2014. V. 61. № 6. P. 3348. https://doi.org/10.1109/TNS.2014.2364894
  11. 11. Toyoda K., Okumura T., Hosoda S., Cho M. // J. Spacecraft Rockets. 2005. V. 42. № 5. P. 947. https://doi.org/https://doi.org/10.2514/1.11602.
  12. 12. Liu Y., Feng W., Wang S., Huang J., Tang X., Wang Zh. GEO Spacecraft potential estimation in worstcase environment by SPIS. // Proc. 14th Spacecraft Charging Technology Conference, ESA/ESTEC, Noordwijk, NL. 2016.
  13. 13. Модель космоса. Вып. 8. Т. 2. / Ред. Новиков Л.С. М.: Изд. МГУ, 2007.
  14. 14. Zhang G.F., Wang T.S., Yang K.J., Chen L., Zhang L.M., Peng H.B, Yuan W., Tian, F. // Nucl. Instr. Methods Phys. Res. B. 2013. V. 316. P. 218. https://doi.org/10.1016/j.nimb
  15. 15. Boizot B., Petite G., Ghaleb D., Reynard B., Calas G. // J. Non-Cryst. Solids. 1999. V. 243. P. 268.
  16. 16. Boizot B., Petite G., Ghaleb D., Calas G. // J. NonCryst. Solids. 2001. V. 283. P. 179.
  17. 17. Sun K., Wang L.M., Ewing R.C., Weber W.J. // Philos. Mag. 2005. V. 85. P. 597.
  18. 18. Chen L., Wang T.S., Zhang G.F., Yang K.J., Peng H.B., Zhang L.M. // Chinese. Phys. B. 2013. V. 22. P. 126101.
  19. 19. Masui H., Toyoda K., Cho M. // IEEE Trans. Plasma Sci. 2008. V. 36. P. 2387. https://doi.org/10.1109/TPS.2008.2003191
  20. 20. Khasanshin R.H., Novikov L.S. // IEEE Trans. Plasma Sci. 2019. V: 47. № 8. P. 3796. https://doi.org/10.1109/TPS.2019.2916210
  21. 21. Ferguson D.C., Katz I. // IEEE Trans. Plasma Sci. 2015. V. 43. № 9. P. 3021. https://doi.org/10.1109/TPS.2015.2432718
  22. 22. Cho M., Kawakita S., Nakamura M., Takahashi M., Sato T., Nozaki Y. // J. Spacecraft Rockets. 2005. V. 42. № 4. P. 740. https://doi.org/10.2514/1.6694
  23. 23. Khasanshin R.H., Novikov L.S. // Adv. Space Res. 2016. V. 57. P. 2187. http://dx.doi.org/10.1016/j.asr.2016.02.23
  24. 24. Purvis C., Garrett H.B., Whittlesey A.C., Stevens N.J. // NASA Tech. 1984. P. 2361.
  25. 25. Свечкин В.П., Савельев А.А., Соколова С.П., Бороздина О.В. // Космич. техника и технология. 2017. № 2. С. 99.
  26. 26. Хасаншин Р.Х., Новиков Л.С. // Перспективные материалы. 2023. № 1. С. 19. https://doi.org/10.30791/1028-978X-2023-1-19-27
  27. 27. Хасаншин Р.Х., Уваров Д.В. // Известия РАН: Сер. физ. 2024. Т. 88. № 4. C. 454.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library