- PII
- S1028096025010117-1
- DOI
- 10.31857/S1028096025010117
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 1
- Pages
- 78-85
- Abstract
- A model of the cathode layer of a glow gas discharge is formulated in the presence of a thin insulating film on the cathode, the thickness of which varies in different areas of its surface, and on some parts of the surface, it may be absent. The model takes into account ion-induced electron emission from the cathode surface, thermal-field electron emission from the cathode substrate into the film, and thermal electron emission from areas of the cathode surface without a film. It is shown that when the cathode is heated, the effective electron emission coefficient of the cathode and the discharge current density decrease, since this reduces the electric field strength in the film, which provides the current density of thermal field electron emission from the cathode substrate into the film necessary to maintain the discharge. As a result, the film emission efficiency, the cathode effective ion-electron emission coefficient and the discharge current density are decreased. Therefore, when the insulating film is on the entire cathode surface, the glow discharge does not transform into an arc discharge for a long time. If there is no insulating film on some part of it, then after cathode heating to a sufficiently high temperature, thermal emission of electrons starts from it. The electrons leave the cathode surface, increase its effective coefficient of electron emission, and discharge current density. This causes more intensive cathode heating and accelerates transition from glow discharge to an arc discharge.
- Keywords
- тлеющий газовый разряд диэлектрическая пленка на катоде температура катода ионно-электронная эмиссия термополевая электронная эмиссия эмиссионная эффективность пленки эффективный коэффициент электронной эмиссии катода переход тлеющего разряда в дуговой разряд
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Zissis G., Kitsinelis S. // J. Phys. D. 2009. V. 42. № 17. Р. 173001. https://doi.org/10.1088/0022-3727/42/17/173001
- 2. Samukawa S., Hori M., Rauf S., Tachibana K., Bruggeman P., Kroesen G., Whitehead J.C., Murphy A.B., Gutsol A.F., Starikovskaia S. // J. Phys. D. 2012. V. 45. № 25. Р. 253001. https://doi.org/10.1088/0022-3727/45/25/253001
- 3. Schwieger J., Baumann B., Wolff M., Manders F., Suijker J. // J. Phys.: Conf. Ser. 2015. V. 655. Р. 012045. https://doi.org/10.1088/1742-6596/655/1/012045
- 4. Райзер Ю.П. Физика газового разряда. Долгопрудный: ИД “Интеллект”, 2009. 736 с.
- 5. Saifutdinov A.I. // Plasma Sources Sci. Tech. 2022. V. 31. № 9. Р. 094008. https://doi.org/10.1088/1361-6595/ac89a7
- 6. Byszewski W.W., Li Y.M., Budinger A.B., Gregor P.D. // Plasma Sources Sci. Tech. 1996. V. 5. № 4. P. 720. https://doi.org/10.1088/0963-0252/5/4/014
- 7. Hadrath S., Beck M., Garner R.C., Lieder G., Ehlbeck J. // J. Phys. D. 2007. V. 40. № 1. P. 163. https://doi.org/10.1088/0022-3727/40/1/009
- 8. Modinos A. Field, Thermionic, and Secondary Electron Emission Spectroscopy. N.Y.: Plenum Press, 1984. 376 p.
- 9. Егоров Н.В., Шешин Е.П. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2017. № 3. C. 5. https://doi.org/10.7868/S0207352817030088
- 10. Ptitsin V.E. // J. Phys.: Conf. Ser. 2011. V. 291. Р. 012019. https://doi.org/10.1088/1742-6596/291/1/012019
- 11. Venkattraman A. // Appl. Phys. Lett. 2014. V. 104. № 19. Р. 194101. https://doi.org/10.1063/1.4876606
- 12. Haase J.R., Go D.B. // J. Phys. D. 2016. V. 49. № 5. Р. 055206. https://doi.org/10.1088/0022-3727/49/5/055206
- 13. Benilov M.S., Benilova L.G. // J. Appl. Phys. 2013. V. 114. № 6. Р. 063307. https://doi.org/10.1063/1.4818325
- 14. Anders A. // Thin Solid Films. 2006. V. 502. P. 22. https://doi.org/10.1016/j.tsf.2005.07.228
- 15. Riedel M., Düsterhöft H., Nagel F. // Vacuum. 2001. V. 61. № 2–4. P. 169. https://doi.org/10.1016/S0042-207X (01)00112-9
- 16. Bondarenko G.G., Fisher M.R., Kristya V.I., Prassitski V.V. // Vacuum. 2004. V. 73. № 2. P. 155. https://doi.org/10.1016/j.vacuum.2003.12.004
- 17. Hadrath S., Ehlbeck J., Lieder G., Sigeneger F. // J. Phys. D. 2005. V. 38. № 17. P. 3285. https://doi.org/10.1088/0022-3727/38/17/S33
- 18. Suzuki M., Sagawa M., Kusunoki T., Nishimura E., Ikeda M., Tsuji K. // IEEE Trans. ED. 2012. V. 59. P. 2256. https://doi.org/10.1109/TED.2012.2197625
- 19. Nijdam S., Desai K.V., Park S.-J., Sun P.P., Sakai O., Lister G., Eden J.G. // Plasma Sources Sci. Tech. 2022. V. 31. № 12. Р. 123001. https://doi.org/10.1088/1361-6595/ac8448
- 20. Bondarenko G.G., Fisher M.R., Kristya V.I. // Vacuum. 2016. V. 129. P. 188. https://doi.org/10.1016/j.vacuum.2016.01.008
- 21. Holgate J.T., Coppins M. // Phys. Rev. Appl. 2017. V. 7. № 4. Р. 044019. https://doi.org/10.1103/PhysRevApplied.7.044019
- 22. Jensen K.L. // J. Appl. Phys. 2019. V. 126. № 6. Р. 065302. https://doi.org/10.1063/1.5109676
- 23. Bondarenko G.G., Kristya V.I., Savichkin D.O. // Vacuum. 2018. V. 149. P. 114. https://doi.org/10.1016/j.vacuum.2017.12.028
- 24. Bondarenko G.G., Fisher M.R., Myo Thi Ha, Kristya V.I. // Russ. Phys. J. 2019. V. 62. № 1. P. 82. https://doi.org/10.1007/s11182-019-01686-z
- 25. Bondarenko G.G., Fisher M.R., Kristya V.I. // Bull. Russ. Acad. Sci.: Phys. 2024. V. 88. № 4. P. 464. https://doi.org/10.1134/S1062873823706074
- 26. Woodworth J.R., Aragon B.P., Hamilton T.W. // Appl. Phys. Lett. 1997. V. 70. № 15. P. 1947. https://doi.org/10.1063/1.118814
- 27. Kim D., Economou D.J. // J. Appl. Phys. 2003. V. 94. № 5. P. 2852. https://doi.org/10.1063/1.1597943
- 28. Kim D., Economou D.J. // J. Appl. Phys. 2004. V. 95. № 7. P. 3311. https://doi.org/10.1063/1.1652249
- 29. Бондаренко Г.Г., Кристя В.И., Йе Наинг Тун // Изв. вузов. Физика. 2015. Т. 58. № 9. С. 99.
- 30. Кристя В.И., Мьо Ти Ха, Фишер М.Р. // Изв. РАН. Сер. физ. 2020. Т. 84. № 6. С. 846. https://doi.org/10.31857/S0367676520060149
- 31. Бондаренко Г.Г., Кристя В.И., Мьо Ти Ха, Фишер М.Р. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2022. № 8. С. 25. https://doi.org/10.31857/S1028096022080039
- 32. Phelps A.V., Petrović Z.Lj. // Plasma Sources Sci. Technol. 1999. V. 8. № 3. P. R21. https://doi.org/10.1088/0963-0252/8/3/201
- 33. Forbes R.G., Edgcombe C.J., Valdrè U. // Ultramicroscopy. 2003. V. 95. P. 57. https://doi.org/10.1016/S0304-3991 (02)00297-8
- 34. Hourdakis E., Bryant G.W., Zimmerman N.M. // J. Appl. Phys. 2006. V. 100. № 12. Р. 123306. https://doi.org/10.1063/1.2400103
- 35. Крютченко О.Н., Маннанов А.Ф., Носов А.А., Степанов В.А., Чиркин М.В. // Поверхность. Физика, химия, механика. 1994. № 6. С. 93.
- 36. Xu N.S., Chen J., Deng S.Z. // Appl. Phys. Lett. 2000. V. 76. № 17. P. 2463. https://doi.org/10.1063/1.126377
- 37. Bondarenko G.G., Fisher M.R., Kristya V.I., Bondariev V. // High Temperature Material Proc. 2022. V. 26. № 1. P. 17. https://doi.org/10.1615/HighTempMatProc.2021041820
- 38. Hancox R. // Br. J. Appl. Phys. 1960. V. 11. № 10. P. 468. https://doi.org/10.1088/0508-3443/11/10/304
- 39. Guile A.E., Hitchcock A.H. // J. Phys. D. 1975. V. 8. № 6. P. 663. https://doi.org/10.1088/0022-3727/8/6/009
- 40. Puchkarev V.F. Mesyats G.A. // J. Appl. Phys. 1995. V. 78. № 9. P. 5633. https://doi.org/10.1063/1.359687