- Код статьи
- S1028096025010102-1
- DOI
- 10.31857/S1028096025010102
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 1
- Страницы
- 71-77
- Аннотация
- В рамках феноменологического подхода изучено возникновение неоднородного магнитного состояния и связанное с этим появление неоднородной электрической поляризации в объеме малых магнитных частиц. Микроскопический механизм такой связи намагниченности с поляризацией обусловлен спин-орбитальным взаимодействием. Конкретный вид намагниченности и поляризации определяется формой и размерами частиц цилиндрической формы. Используя выражение свободной энергии для намагниченности, мы получили выражение для неоднородного распределения намагниченности в виде трехмерных магнитных вихрей. Вихревое состояние возникает только для цилиндров с радиусом больше определенного критического значения, а для частиц с меньшим радиусом возникает однородное магнитное состояние. В вихревом состоянии появляется неоднородная электрическая поляризация. Векторы локальной поляризации имеют вид лучей, направленных к оси цилиндра. Определена область существования таких неоднородных состояний. Рассмотрено изменение локальной электрической поляризации малых магнитных частиц цилиндрической формы во внешнем магнитном поле. Получено выражение для магнитоэлектрической восприимчивости.
- Ключевые слова
- магнитные частицы электрическая поляризация феноменологическая теория фазовых переходов спин-орбитальное взаимодействие магнитоэлектрический эффект
- Дата публикации
- 14.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 5
Библиография
- 1. Hehn M., Ounadjela K., Bucher J-P et al. // Science. 1996. V. 272. No. 5269. P. 1782. https://doi.org/10.1126/science.272.5269.1782
- 2. Cowburn R.P., Koltsov D.K., Adeyeye A.O., Welland M. E., and Tricker D. M. // Phys. Rev. Lett. 1999. V. 83. No. 5. P. 1042. https://doi.org/10.1103/PhysRevLett.83.1042
- 3. Stapper Jr. C.H. // J. Appl. Phys. 1969. V. 40. No. 2. P. 798. https://doi.org/10.1063/1.1657466
- 4. Usov N.A., Nesmeyanov M.S. // Scientific Reports. 2020. V. 10. Art. No. 10173. https://doi.org/10.1038/s41598-020-67173-5
- 5. Peixoto L., Magalhaes R., Navas D. et al. // Appl. Phys. Rev. 2020. V. 7. Art. No. 011310. https://doi.org/10.1063/1.5121702
- 6. Sergienko I.A., Dagotto E. // Phys. Rev. B. 2006. V. 73, № 9, P. 094434. https://doi.org/ 10.1103/PhysRevB.73.094434
- 7. Cheong S.-W., Mostovoy M. // Nat. Mater. 2007. V. 6. № 1, P. 13. https://doi.org/ 10.1038/nmat1804
- 8. Roßler U. K., Bogdanov A. N., Pfleiderer C. // Nature. 2006. V. 442. P. 17. https://doi.org/10.1038/nature05056
- 9. Levanyuk A.P., Blinc R. // Phys. Rev. Lett. 2013. V. 111. No. 9. Art. No. 097601. https://doi.org/10.1103/PhysRevLett.111.097601
- 10. Hill N.A. // J. Phys. Chem. B. 2000. V. 104. No. 29. P. 6694. https://doi.org/10.1021/jp000114x
- 11. Khanh N.D., Abe N., Sagayama H., Nakao A., Hanashima T., Kiyanagi R., Tokunaga Y., Arima T. // Phys. Rev. B. 2016. V. 93. № 7. P. 075117. https://doi.org/10.1103/PhysRevB.93.075117
- 12. Ma C., Zhang X., Xia J., Ezawa M., Jiang W., Ono T., Piramanayagam S. N., Morisako A., Zhou Y., Liu X. // Nano Lett. 2019. V. 19, P. 353. https://doi.org/ 10.1021/acs.nanolett.8b03983
- 13. Zheng F., Rybakov F.N., Borisov A.B., Song D., Wang S., Li Zi-An, Du H., Kiselev N.S., Caron J., Kovacs A., Tian M., Zhang Y., Brugel S., Dunin-Borkowski R.E. // Nature Nanotechnology. 2018. V. 13. P. 451. https://doi.org/10.1038/s41565-018-0093-3
- 14. Гуревич Л. Э., Филиппов Д. А. // Физика твердого тела. 1986. Т. 28. № 9. С. 2696.
- 15. Zhang X., Zhou Y., Song K.M., Park T.-E., Xia J., Ezawa M., Liu X., Zhao W., Zhao G., Woo S. // J. Phys.: Condens. Matter. 2020. V. 32. P. 143001. https://doi.org/10.1088/1361-648X/ab5488
- 16. Mostovoy M. // Phys. Rev. Lett. 2006. V. 96. № 6. P. 067601. https://doi.org/10.1103/PhysRevLett.96.067601.
- 17. Логгинов А.С., Мешков Г.А., Николаев А.В., Пятаков А.П. // Письма в ЖЭТФ. 2007. Т. 86. № 2. С. 124; (Logginov A.S., Meshkov G.A., Nikolaev A.V., Pyatakov A.P. // JETP Letters. 2007. V. 86. No. 2. P. 115). https://doi.org/10.1134/S0021364007140093
- 18. Levanyuk A.P., Blinc R. // Phys. Rev. Lett. 2013. V. 111. No. 9. Art. No. 097601. https://doi.org/10.1103/PhysRevLett.111.097601
- 19. Дзялошинский И.Е. // ЖЭТФ. 1960. Т. 37. № 3. С. 881; Dzyaloshinskii I.E. // JETP. 1960. V. 10. No. 3. P. 628.
- 20. Moriya T. // Phys. Rev. 1960. V. 120. No. 1. P. 91. https://doi.org/10.1103/PhysRev.120.91
- 21. Звездин А.К., Пятаков А.П. // УФН. 2009. Т. 179. № 8. С. 897. https://doi.org/10.3367/UFNr.0179.200908i.0897
- 22. Пятаков А.П., Звездин А.К. // УФН. 2012. Т. 182. № 6. С. 593. https://doi.org/10.3367/UFNr.0182.201206b.0593
- 23. Pyatakov A.P., Sergeev A.S., Mikailzade F.A., Zvezdin A.K. // JMMM. 2015. V. 383. P. 255. https://doi.org/ 10.1016/j.jmmm.2014.11.035
- 24. Шапошникова Т.С., Мамин Р.Ф. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2021. № 12. С. 31. https://doi.org/10.31857/S1028096021120190; (Shaposhnikova T.C., Mamin R.F. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2021. V. 15. № 6. P. 1282). https://doi.org/10.1134/S1027451021060434
- 25. Шапошникова Т.С., Мамин Р.Ф. // Изв. РАН. Сер. физ. 2024. Т. 88. № 5; (Shaposhnikova T.C., Mamin R.F. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 5. P. 783. https://doi.org/10.1134/S1062873824706597
- 26. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. Москва: Наука, 1982, 620 с.
- 27. Sato M., Ishii Y. // J. Appl. Phys. 1989. V. 66. P. 983. https://doi.org/10.1063/1.343481