- PII
- S1028096025010099-1
- DOI
- 10.31857/S1028096025010099
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 1
- Pages
- 64-70
- Abstract
- Radiation damages in Fe3O4 magnetite crystal caused by implantation of Fe ions with an energy of 5.6 MeV and a fluence of 1014 cm–2 was studied by two methods of Mössbauer spectroscopy: conversion Mössbauer spectroscopy with registration of conversion electrons from a depth of up to 0.5 μm and X-ray Mössbauer spectroscopy with registration of secondary X-ray radiation from a depth of up to 35 μm. The samples were Fe3O4 single crystal tablets with a diameter of 10 mm. The data for irradiated and non-irradiated samples were compared. All Mössbauer spectra contained two sixtets corresponding to crystallographic positions A and B in magnetite. The parameters of the sixtets corresponded to the literature data. The widths of the Mössbauer lines were small and were in the range of G = 0.3–0.4 mm/s. Irradiation with Fe ions did not cause noticeable damage in the crystal lattice. In the case of the irradiated sample, an additional FeOx phase with an intensity of 10% was detected using conversion Mössbauer spectroscopy method with an effective depth of 0.5 μm. The experimental data were considered based on the thermal spike model. The formation of the FeOх phase is possible as a result of quenching after overheating in the track area.
- Keywords
- облучение ионы Fe магнетит Fe3O4 мессбауэровская спектроскопия ядра 57Fe электроны конверсии рентгеновское излучение магнитная сверхтонкая структура ионные треки тепловой пик
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Григорьев Е.Г., Перлович Ю.А., Соловьев Г.И., Удовский А.Л., Якушин В.Л. Физическое материаловедение. Т. 4. Физические основы прочности. Радиационная физика твердого тела. Компьютерное моделирование / Ред. Калин Б.А. М.: МИФИ, 2008. 696 с.
- 2. Вас Г.С. Основы радиационного материаловедения. Металлы и сплавы. М.: Техносфера, 2014. 992 c.
- 3. Комаров Ф.Ф. // УФН. 2003. Т. 173. № 12. C. 1287.
- 4. Андрианов В.А., Бедельбекова К.А., Озерной А.Н., Верещак М.Ф., Манакова И.А., Дектерева А.С. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 4. С. 63. https://www.doi.org.10.31857/S1028096020040032
- 5. Andrianov V.A., Bedelbekova K.A., Trigub A.L. // Vacuum. 2021. V. 193. Р. 110521. https://www.doi.org 10.1016/J.Vacuum.2021.110521
- 6. Андрианов В.А., Бедельбекова К.А., Ерзинкян А.Л., Тригуб А.Л. // Поверхность. Рентген., синхротр.и нейтрон. исслед. 2022. № 7. C. 3. https://www.doi.org/10.31857/S1028096022070020
- 7. WWW-МИНКРИСТ. https://database.iem.ac.ru/mincryst/rus/search.php
- 8. Grenveld F., Sveen A. // J. Chem. Thermodynam. 1974. V. 6. P. 859. https://www.doi.org/10.1016/0021-9614 (74)90230-4
- 9. Mössbauer Mineral Handbook / Ed. Stevens J.G. et al. North Carolina: Mössbauer Effect Data Center, 2005. 636 p.
- 10. SRIM. http://www.srim.org/
- 11. Nomura K., Ujihira Y., Vertes A. // J. Radioanal. Nuclear. Chem. 1996. V. 202. № 1–2. P. 103.
- 12. Белозерский Г.Н. Мессбауэровская спектроскопия как метод исследования поверхности. М.: Энергоатомиздат, 1990. 352 c.
- 13. Terrell J.H., Spijkerman J.J. // Appl. Phys. Lett. 1968. V. 13. P. 11. https://www.doi.org/10.1063/1.1652437
- 14. RRUFF: https://rruff.info
- 15. Toulemonde M., Dufour Ch., Meftah A, Paumier E. // Nucl. Instrum. Methods Phys. Res. B. 2000. V. 166–167. P. 903. https://www.doi.org/10.1016/S0168-583X (99)00799-5