RAS PhysicsПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

Change in the Free Volume in Amorphous AlNiY Alloy under Plastic Deformation

PII
S30345731S1028096025040166-1
DOI
10.7868/S3034573125040166
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
112-118
Abstract
The surface morphology and structure of the amorphous AlNiY alloy subjected to deformation by multiple cold rolling were studied using X-ray diffraction and scanning electron microscopy. It was shown that during plastic deformation, steps are formed on the surface of the amorphous alloy due to the emergence of shear bands on the surface. It was found that aluminum crystals are formed in the deformed alloy. The steps on the surface of the deformed alloy were analyzed using the images obtained by the scanning electron microscopy method. It was shown that the length of the steps remains approximately the same when examining the surface of different areas of the deformed alloy. An assessment was made of the change in the fraction of free volume in the studied alloy during plastic deformation. The applied methodology made it possible to assess the difference in the density of undeformed and deformed alloys of different compositions using electron microscopic images. Determining the change in free volume content in amorphous alloys subjected to plastic deformation is a key factor in studying the ways of forming amorphous-nanocrystalline structures with improved mechanical properties.
Keywords
металлические стекла аморфная фаза свободный объем пластическая деформация кристаллизация рентгеноструктурный анализ полосы сдвига растровая электронная микроскопия
Date of publication
11.11.2024
Year of publication
2024
Number of purchasers
0
Views
54

References

  1. 1. Becker M., Kuball A., Ghavimi A., Adam B., Busch R., Gallino I., Balle F. // Materials. 2022. V. 15. № 21. P. 7673. https://www.doi.org/10.3390/ma15217673
  2. 2. Gao M.H., Zhang S.D., Yang B.J., Qiu S., Wang H.W., Wang J.Q. // Appl. Surf. Sci. 2020. V. 530. P. 147211. https://www.doi.org/10.1016/j.apsusc.2020.147211
  3. 3. Ming W., Guo X., Xu Y., Zhang G., Jiang Z., Li Y., Li X. // Ceram. Int. 2023. V. 49. № 2. P. 1585. https://www.doi.org/10.1016/j.ceramint.2022.10.349
  4. 4. Meenuga S.R., Babu D.A., Majumdar B., Birru A.K., Guruvidyathri K., Raja M.M. // J. Magn. Magn. Mater. 2023. V. 584. P. 171087. https://www.doi.org/10.1016/j.jmmm.2023.171087
  5. 5. Jin Y., Inoue A., Kong F.L., Zhu S.L., Al-Marzouki F., Greer A.L. // J. Alloys Compd. 2020. V. 832. P. 154997. https://www.doi.org/10.1016/j.jallcom.2020.154997
  6. 6. Zhang C.Y., Zhu Z.W., Li S.T., Wang Y.Y., Li Z.K., Li H., Yuan G., Zhang H.F. // J. Mater. Sci. 2024. V. 181. P. 115. https://www.doi.org/10.1016/j.jmst.2023.09.022
  7. 7. Люборский Ф.Е. Аморфные металлические сплавы. М.: Металлургия, 1987. 584 с.
  8. 8. Greer A.L. // Science. 1995. V. 267. № 5206. P. 1947. https://www.doi.org/10.1126/science.267.5206.1947
  9. 9. Turnbull D., Cohen M.H. // J. Chem. Phys. 1970. V. 52. № 6. P. 3038. https://www.doi.org/10.1063/1.1673434
  10. 10. Astanin V., Gunderov D., Titov V., Asfandiyarov R. // Metals. 2022. V. 12. № 8. P. 1278. https://www.doi.org/10.3390/met12081278
  11. 11. Chen Z.Q., Huang L., Wang F., Huang P., Lu T.J., Xu K.W. // Mater. Des. 2016. V. 109. P. 179. https://www.doi.org/10.1016/j.matdes.2016.07.069
  12. 12. Doolittle A.K. // J. Appl. Phys. 1951. V. 22. № 12. P. 1471. https://www.doi.org/10.1063/1.1699894
  13. 13. Ramachandrarao P., Cantor B., Cahn R.W. // J. Non. Cryst. Solids. 1977. V. 24. № 1. P. 109. https://www.doi.org/10.1016/0022-3093 (77)90065-5
  14. 14. Soshiroda T., Koiwa M., Masumoto T. // J. Non. Cryst. Solids. 1976. V. 22. № 1. P. 173. https://www.doi.org/10.1016/0022-3093 (76)90017-X
  15. 15. Lou Y., Liu X., Yang X., Ge Y., Zhao D., Wang H., Zhang L.-C., Liu Z. // Intermetallics. 2020. V. 118. P. 106687. https://www.doi.org/10.1016/j.intermet.2019.106687
  16. 16. Spaepen F. // Acta Metall. 1977. V. 25. № 4. P. 407. https://www.doi.org/10.1016/0001-6160 (77)90232-2
  17. 17. Argon A.S. // Acta Metall. 1979. V. 27. № 1. P. 47. https://www.doi.org/10.1016/0001-6160 (79)90055-5
  18. 18. Greer A.L., Cheng Y.Q., Ma E. // Mater. Sci. Eng. R. 2013. V. 74. № 4. P. 71. https://www.doi.org/10.1016/j.mser.2013.04.001
  19. 19. Rosner H., Peterlechner M., Kubel C., Schmidt V., Wilde G. // Ultramicroscopy. 2014. V. 142. P. 1. https://www.doi.org/10.1016/j.ultramic.2014.03.006
  20. 20. Liu C., Roddatis V., Kenesei P., Maas R. // Acta Mater. 2017. V. 140. P. 206. https://www.doi.org/10.1016/j.actamat.2017.08.032
  21. 21. Чиркова В.В., Абросимова Г.Е., Першина Е.А., Волков Н.А., Аронин А.С. // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2023. № 11. С. 16. https://www.doi.org/10.31857/S1028096023110080
  22. 22. Tsai A.-P., Kamiyama T., Kawamura Y., Inoue A., Masumoto T. // Acta Mater. 1997. V. 45. № 4. P. 1477. https://www.doi.org/10.1016/S1359-6454 (96)00268-6
  23. 23. Anghelus A., Avettand-Fenoel M.-N., Cordier C., Taillard R. // J. Alloys Compd. 2015. V. 651. V. 454. https://www.doi.org/10.1016/j.jallcom.2015.08.102
  24. 24. Park J.S., Lim H.K., Kim J.-H., Chang H.J., Kim W.T., Kim D.H., Fleury E. // J. Non-Cryst. Solids. 2005. V. 351. № 24-26. P. 2142. https://www.doi.org/10.1016/J.JNONCRYSOL.2005.04.070
  25. 25. Hebert R.J., Perepezko J.H., Rosner H., Wilde G. // Beilstein J. Nanotechnol. 2016. V. 7. № 1. P. 1428. https://www.doi.org/10.3762/bjnano.7.134
  26. 26. Аронин А.С., Волков Н.А., Першина Е.А. // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2024. № 1. C. 33. https://www.doi.org/10.31857/S1028096024010054
  27. 27. Aronin A.S., Louzguine-Luzgin D.V. // Mech. Mater. 2017. V. 113. P. 19. https://www.doi.org/10.1016/j.mechmat.2017.07.007
  28. 28. Gunderov D., Astanin V., Churakova A., Sitdikov V., Ubyivovk E., Islamov A., Wang J.T. // Metals. 2020. V. 10. № 11. P. 1433. https://www.doi.org/10.3390/met10111433
  29. 29. Абросимова Г.Е., Астанин В.В., Волков Н.А., Гундеров Д.В., Постнова Е.Ю., Аронин А.С. // ФММ. 2023. T. 124. № 7. C. 622. https://www.doi.org/10.31857/S0015323023600521
  30. 30. He J., Kaban I., Mattern N., Song K., Sun B., Zhao J., Kim D.H., Eckert J., Greer A.L. // Sci. Reports. 2016. V. 6. P. 25832. https://www.doi.org/10.1038/srep25832
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library