ОФНПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

ИЗМЕНЕНИЕ СВОБОДНОГО ОБЪЕМА В АМОРФНОМ СПЛАВЕ AlNiY ПРИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ

Код статьи
S30345731S1028096025040166-1
DOI
10.7868/S3034573125040166
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 4
Страницы
112-118
Аннотация
Методами рентгенографии и растровой электронной микроскопии были исследованы морфология поверхности и структура аморфного сплава AlNiY, подвергнутого деформации методом многократной холодной прокатки. Показано, что при пластической деформации на поверхности аморфного сплава появляются ступеньки, что обусловлено выходом полос сдвига на поверхность. Обнаружено, что в деформированном сплаве происходит образование кристаллов алюминия. По изображениям, полученным методом растровой электронной микроскопии, проанализированы ступеньки на поверхности деформированного сплава. Показано, что длина ступенек остается примерно одинаковой на разных участках поверхности деформированного сплава. Проведена оценка изменения доли свободного объема в исследуемом сплаве при пластической деформации. Использованная методика позволяет оценить разницу плотности недеформированных и деформированных сплавов различного состава по изображениям, полученным методом растровой электронной микроскопии. Определение изменения содержания свободного объема в аморфных сплавах, подвергнутых пластической деформации, является ключевым фактором при исследовании путей формирования аморфно-нанокристаллических структуры материала с повышенными механическими характеристиками.
Ключевые слова
металлические стекла аморфная фаза свободный объем пластическая деформация кристаллизация рентгеноструктурный анализ полосы сдвига растровая электронная микроскопия
Дата публикации
11.11.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
50

Библиография

  1. 1. Becker M., Kuball A., Ghavimi A., Adam B., Busch R., Gallino I., Balle F. // Materials. 2022. V. 15. № 21. P. 7673. https://www.doi.org/10.3390/ma15217673
  2. 2. Gao M.H., Zhang S.D., Yang B.J., Qiu S., Wang H.W., Wang J.Q. // Appl. Surf. Sci. 2020. V. 530. P. 147211. https://www.doi.org/10.1016/j.apsusc.2020.147211
  3. 3. Ming W., Guo X., Xu Y., Zhang G., Jiang Z., Li Y., Li X. // Ceram. Int. 2023. V. 49. № 2. P. 1585. https://www.doi.org/10.1016/j.ceramint.2022.10.349
  4. 4. Meenuga S.R., Babu D.A., Majumdar B., Birru A.K., Guruvidyathri K., Raja M.M. // J. Magn. Magn. Mater. 2023. V. 584. P. 171087. https://www.doi.org/10.1016/j.jmmm.2023.171087
  5. 5. Jin Y., Inoue A., Kong F.L., Zhu S.L., Al-Marzouki F., Greer A.L. // J. Alloys Compd. 2020. V. 832. P. 154997. https://www.doi.org/10.1016/j.jallcom.2020.154997
  6. 6. Zhang C.Y., Zhu Z.W., Li S.T., Wang Y.Y., Li Z.K., Li H., Yuan G., Zhang H.F. // J. Mater. Sci. 2024. V. 181. P. 115. https://www.doi.org/10.1016/j.jmst.2023.09.022
  7. 7. Люборский Ф.Е. Аморфные металлические сплавы. М.: Металлургия, 1987. 584 с.
  8. 8. Greer A.L. // Science. 1995. V. 267. № 5206. P. 1947. https://www.doi.org/10.1126/science.267.5206.1947
  9. 9. Turnbull D., Cohen M.H. // J. Chem. Phys. 1970. V. 52. № 6. P. 3038. https://www.doi.org/10.1063/1.1673434
  10. 10. Astanin V., Gunderov D., Titov V., Asfandiyarov R. // Metals. 2022. V. 12. № 8. P. 1278. https://www.doi.org/10.3390/met12081278
  11. 11. Chen Z.Q., Huang L., Wang F., Huang P., Lu T.J., Xu K.W. // Mater. Des. 2016. V. 109. P. 179. https://www.doi.org/10.1016/j.matdes.2016.07.069
  12. 12. Doolittle A.K. // J. Appl. Phys. 1951. V. 22. № 12. P. 1471. https://www.doi.org/10.1063/1.1699894
  13. 13. Ramachandrarao P., Cantor B., Cahn R.W. // J. Non. Cryst. Solids. 1977. V. 24. № 1. P. 109. https://www.doi.org/10.1016/0022-3093 (77)90065-5
  14. 14. Soshiroda T., Koiwa M., Masumoto T. // J. Non. Cryst. Solids. 1976. V. 22. № 1. P. 173. https://www.doi.org/10.1016/0022-3093 (76)90017-X
  15. 15. Lou Y., Liu X., Yang X., Ge Y., Zhao D., Wang H., Zhang L.-C., Liu Z. // Intermetallics. 2020. V. 118. P. 106687. https://www.doi.org/10.1016/j.intermet.2019.106687
  16. 16. Spaepen F. // Acta Metall. 1977. V. 25. № 4. P. 407. https://www.doi.org/10.1016/0001-6160 (77)90232-2
  17. 17. Argon A.S. // Acta Metall. 1979. V. 27. № 1. P. 47. https://www.doi.org/10.1016/0001-6160 (79)90055-5
  18. 18. Greer A.L., Cheng Y.Q., Ma E. // Mater. Sci. Eng. R. 2013. V. 74. № 4. P. 71. https://www.doi.org/10.1016/j.mser.2013.04.001
  19. 19. Rosner H., Peterlechner M., Kubel C., Schmidt V., Wilde G. // Ultramicroscopy. 2014. V. 142. P. 1. https://www.doi.org/10.1016/j.ultramic.2014.03.006
  20. 20. Liu C., Roddatis V., Kenesei P., Maas R. // Acta Mater. 2017. V. 140. P. 206. https://www.doi.org/10.1016/j.actamat.2017.08.032
  21. 21. Чиркова В.В., Абросимова Г.Е., Першина Е.А., Волков Н.А., Аронин А.С. // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2023. № 11. С. 16. https://www.doi.org/10.31857/S1028096023110080
  22. 22. Tsai A.-P., Kamiyama T., Kawamura Y., Inoue A., Masumoto T. // Acta Mater. 1997. V. 45. № 4. P. 1477. https://www.doi.org/10.1016/S1359-6454 (96)00268-6
  23. 23. Anghelus A., Avettand-Fenoel M.-N., Cordier C., Taillard R. // J. Alloys Compd. 2015. V. 651. V. 454. https://www.doi.org/10.1016/j.jallcom.2015.08.102
  24. 24. Park J.S., Lim H.K., Kim J.-H., Chang H.J., Kim W.T., Kim D.H., Fleury E. // J. Non-Cryst. Solids. 2005. V. 351. № 24-26. P. 2142. https://www.doi.org/10.1016/J.JNONCRYSOL.2005.04.070
  25. 25. Hebert R.J., Perepezko J.H., Rosner H., Wilde G. // Beilstein J. Nanotechnol. 2016. V. 7. № 1. P. 1428. https://www.doi.org/10.3762/bjnano.7.134
  26. 26. Аронин А.С., Волков Н.А., Першина Е.А. // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2024. № 1. C. 33. https://www.doi.org/10.31857/S1028096024010054
  27. 27. Aronin A.S., Louzguine-Luzgin D.V. // Mech. Mater. 2017. V. 113. P. 19. https://www.doi.org/10.1016/j.mechmat.2017.07.007
  28. 28. Gunderov D., Astanin V., Churakova A., Sitdikov V., Ubyivovk E., Islamov A., Wang J.T. // Metals. 2020. V. 10. № 11. P. 1433. https://www.doi.org/10.3390/met10111433
  29. 29. Абросимова Г.Е., Астанин В.В., Волков Н.А., Гундеров Д.В., Постнова Е.Ю., Аронин А.С. // ФММ. 2023. T. 124. № 7. C. 622. https://www.doi.org/10.31857/S0015323023600521
  30. 30. He J., Kaban I., Mattern N., Song K., Sun B., Zhao J., Kim D.H., Eckert J., Greer A.L. // Sci. Reports. 2016. V. 6. P. 25832. https://www.doi.org/10.1038/srep25832
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека