RAS PhysicsПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

Modeling of Damage along the Tracks of Swift Heavy Ions in Polyethylene

PII
S30345731S1028096025040081-1
DOI
10.7868/S3034573125040081
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
56-62
Abstract
The results of atomic-level modeling of damage formation along the whole trajectory of swift heavy ions, stopping in the electronic energy loss mode in polyethylene are presented. Theoretical models could significantly improve the understanding of track formation in polymers, but their main disadvantage is an insufficient level of detail. In this paper, this problem is solved by using a multiscale hybrid approach: the Monte-Carlo TREKIS program describes the excitation of an electronic system of a target; the reactive molecular dynamics of the response of an atomic system to an ion-induced perturbation within the framework of the LAMMPS program allows to trace the damage up to the time of complete cooling of the track. Detailed tracing of the coupled electronic and atomic kinetics has shown that the damage maxima are spatially separated by at least 10 micrometers from the maxima of energy released by the ions. The differences occur due to the dependence of the initial spectra of electrons generated near the ion trajectory on the ion energy. The effects demonstrated should be the same for all polymers and may be critical for the effective operation of devices and detectors containing thin polymer films irradiated with swift heavy ions.
Keywords
быстрые тяжелые ионы полимеры полиэтилен метод Монте-Карло TREKIS-3 молекулярная динамика реактивные силовые поля LAMMPS AIREBO-M
Date of publication
20.12.2024
Year of publication
2024
Number of purchasers
0
Views
56

References

  1. 1. Zhao S., Zhang G., Shen W., Wang X., Liu F. // J. Appl. Phys. 2020. V. 128. № 13. P. 131102. https://www.doi.org/10.1063/5.0015975
  2. 2. Komarov F.F. // Physics-Uspekhi. 2017. V. 60. № 5. P. 435. https://www.doi.org/10.3367/ufne.2016.10.038012
  3. 3. Medvedev N., Volkov A.E., Rymzhanov R., Akhmetov F., Gorbunov S., Voronkov R., Babaev P. // J. Appl. Phys. 2023. V. 133. № 10. P. 8979. https://www.doi.org/10.1063/5.0128774
  4. 4. Liu F., Wang M., Wang X., Wang P. // Nanotechnology. 2018. V. 30. № 5. P. 052001. https://www.doi.org/10.1088/1361-6528/aaed6d
  5. 5. Apel P. // Radiat. Phys. Chem. 2019. V. 159. P. 25. https://doi.org/10.1016/j.radphyschem.2019.01.009
  6. 6. Fink D. // Springer Science & Business Media. 2004. V.63.
  7. 7. Husaini S., Zaidi J., Malik F., Arif M. // Radiat. Meas. 2008. V. 4. P. S607. https://doi.org/10.1016/j.radmeas.2008.03.070
  8. 8. Tuleushev A., Harrison F., Kozlovskiy A., Zdorovets M. // Polymers. 2023. V.15 №20. P. 4050. https://doi.org/10.3390/polym15204050
  9. 9. Balanzat E., Betz N., Bouffard S. // Nucl Instrum Methods Phys Res B . 1995. V. 105. P.46. https://doi.org/10.1016/0168-583X (95)00521-8
  10. 10. Shen W., Wang X., Zhang G., Kluth P., Wang Y., Liu F. // Nucl. Instrum. Methods Phys. Res. B. 2023. V. 535. P. 102. https://www.doi.org/10.1016/j.nimb.2022.11.021
  11. 11. Kański M., Dawid M., Postawa Z., Ashraf M.C., van Duin A.C.T., Garrison B.J. // J. Phys. Chem. Lett. 2018. V. 9. Iss. 2. P. 359. https://www.doi.org/10.1021/acs.jpclett.7b03155
  12. 12. Kański M., Hrabar S., van Duin A.C.T., Postawa Z. // J. Phys. Chem. Lett. 2022. V. 13. Iss. 2. P. 628. https://www.doi.org/10.1021/acs.jpclett.1c03867
  13. 13. Medvedev N.A., Rymzhanov R.A., Volkov A.E. // J. Phys. D: Appl. Phys. 2015. V. 48. № 35. P. 355303. https://www.doi.org/10.1088/0022-3727/48/35/355303
  14. 14. Rymzhanov R.A., Medvedev N.A., Volkov A.E. // Nucl. Instrum. Methods Phys. Res. B. 2016. V. 388. P. 41. https://www.doi.org/10.1016/j.nimb.2016.11.002
  15. 15. Van Hove L. // Phys. Rev. 1954. V. 95. № 1. P. 249. https://www.doi.org/10.1103/PhysRev.95.249
  16. 16. Palik E.D. Handbook of optical constants of solids. Academic press, 1997. 2008 p.
  17. 17. Henke B.L., Gullikson E.M., Davis J.C. // Atomic data and nuclear data tables. 1993. V. 54. № 2. P. 181. https://www.doi.org/10.1006/adnd.1993.1013
  18. 18. Ritchie R.H., Howie A. // Philos. Mag. 1977. V. 36. № 2. P. 463. https://www.doi.org/10.1080/14786437708244948
  19. 19. Adachi S. The Handbook on Optical Constants of Semiconductors: In Tables and Figures. Singapore: World Scientific Publishing Company, 2012. 632 p.
  20. 20. Powell C.J., Jablonski A. // J. Phys. Chem. Ref. Data. 1999. V. 28. № 1. P. 19. https://www.doi.org/10.1063/1.556035
  21. 21. Jablonski A., Powell C.J. // J. Electron Spectros Relat. Phenomena. 2015. V. 199. P. 27. https://www.doi.org/10.1016/j.elspec.2014.12.011
  22. 22. Ziegler J.P., Biersack U., Littmark J.F. The Stopping and Range of Ions in Solids. New York: Pergamon Press, 1985. 321 p.
  23. 23. Medvedev N., Babaev P., Chalupsky J., Juha L., Volkov A.E. // Phys. Chem. Chem. Phys. 2021. V. 23. № 30. P. 16193. https://www.doi.org/10.1039/D1CP02199K
  24. 24. Jo S., Kim T., Iyer V.G., Im W. // J. Comput. Chem. 2008. V. 29. № 11. P. 1859. https://www.doi.org/10.1002/jcc.20945
  25. 25. Abbott L.J., Hart K.E., Colina C.M. // Theor. Chem. Acc. 2013. V. 132. P. 1. https://www.doi.org/10.1007/s00214-013-1334-z
  26. 26. Shirazi M.M.H., Khajouei-Nezhad M., Zebarjad S.M., Ebrahimi R. // Polym. Bull. 2020. V. 77. P. 1681. https://www.doi.org/10.1007/s00289-019-02827-7
  27. 27. Berendsen H.J.C., Postma J.P.M., Gunsteren W.F., DiNola A., Haak J.R. // J. Chem. Phys. 1984. V. 81. № 8. P. 3684. https://www.doi.org/10.1063/1.448118
  28. 28. Plimpton S. // J. Comput. Phys. 1995. V. 117. № 1. P. 1. https://www.doi.org/10.1006/jcph.1995.1039
  29. 29. O′Connor T.C., Andzelm J., Robbins M. // J. Chem. Phys. 2015. V. 142. № 2. P. 024903. https://www.doi.org/10.1063/1.4905549
  30. 30. Stukowski A. // Modelling Simul. Mater. Sci. Eng. 2009. V. 18. № 1. P. 015012. https://www.doi.org/10.1088/0965-0393/18/1/015012
  31. 31. Rymzhanov R.A., Gorbunov S.A., Medvedev N., Volkov A.E. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 440. P. 25. https://www.doi.org/10.1016/j.nimb.2018.11.034
  32. 32. Rymzhanov, R.A., Medvedev, N., Volkov, A.E. // J. Mater Sci. 2023. V. 58. P. 14072. https://www.doi.org/10.1007/s10853-023-08898-2
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library