- PII
- S30345731S1028096025040011-1
- DOI
- 10.7868/S3034573125040011
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 4
- Pages
- 3-10
- Abstract
- Despite the large number of already published articles on the topic of ferroelectric properties of HfZrO (HZO), this material still attracts enormous attention of the scientific community due to the prospects for creating competitive non-volatile HZO-based memory devices compatible with modern silicon technology. Among the difficulties on the way to creating industrial technology for such devices is the instability of the residual polarization of the ferroelectric during multiple switching by an external electric field. In particular, at the initial stages of such “cycling”, as a rule, a significant increase in residual polarization is observed (the so-called “wake-up” effect), and then, after a certain number of cycles, its decrease (the so-called “fatigue” effect). The question of what processes lead to such instability remains debatable. Using the previously developed methodology for analyzing the phase composition of ultrathin HZO layers by the NEXAFS synchrotron radiation method, it is shown that in capacitors based on TiN/HZO/TiN structures, the “wake-up” effect observed during the first 105 switching cycles is explained by an increase in the relative content of the polar orthorhombic phase in HZO due to a decrease in the content of the “parasitic” tetragonal phase. The obtained results confirm the electric field-stimulated structural phase transition in films as one of the mechanisms explaining the evolution of the functional properties of ferroelectric memory elements based on HZO throughout their service life.
- Keywords
- атомно-слоевое осаждение сегнетоэлектричество HfZrO электрофизические свойства энергонезависимая память тонкая структура спектров поглощения рентгеновских лучей
- Date of publication
- 27.12.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 53
References
- 1. Robertson J. // Rep. Progress Phys. 2005. V. 69. P. 327. https://doi.org/10.1088/0034-4885/69/2/R02
- 2. Kim S. K., Lee S. W., Han J. H., Lee B., Han S., Hwang C. S. // Adv. Funct. Mater. 2010. V 20. P. 2989. https://doi.org/10.1002/adfm.201000599
- 3. Boscke T.S., Muller J., Brauhaus D., Schroder U., Bottger U. // Appl. Phys. Lett. 2011. V. 99. P. 102903. https://doi.org/10.1063/1.3634052
- 4. Mueller S., Mueller J., Singh A., Riedel S., Sundqvist J., Schroeder U., Mikolajick T. // Adv. Funct. Mater. 2012. V. 22. P. 2412. https://doi.org/10.1002/adfm.201103119
- 5. Chernikova A.G., Kuzmichev D.S., Negrov D.V., Kozodaev M.G., Polyakov S.N., Markeev A.M. // Appl. Phys. Lett. 2016. V. 108. P. 242905. https://doi.org/10.1063/1.4953787
- 6. Hoffmann M., Schroeder U., Schenk T., Shimizu T., Funakubo H., Sakata O., Pohl D., Drescher M., Adelmann C., Materlik R., Kersch A., Mikolajick T. // J. Appl. Phys. 2015. V. 118. P. 072006. https://doi.org/10.1063/1.4927805
- 7. Muller J., Schroder U., Boscke T. S., Muller I., Bottger U., Wilde L., Sundqvist J., Lemberger M., Kucher P., Mikolajick T., Frey L. // J. Appl. Phys. 2011. V. 110. P. 114113. https://doi.org/10.1063/1.3667205
- 8. Schroeder U., Yurchuk E., Muller J., Martin D., Schenk T., Polakowski P., Adelmann C., Popovici M.I., Kalinin S.V., Mikolajick T. // Jpn. J. Appl. Phys. 2014. V. 53. P. 08LE02. https://doi.org/10.7567/JJAP.53.08LE02
- 9. Muller J., Boscke T.S., Schroder U., Mueller S., Brauhaus D., Bottger U., Frey L., Mikolajick T. // Nano Lett. 2012. V. 12. P. 4318. https://doi.org/10.1021/nl302049k
- 10. Hyuk Park M., Joon Kim H., Jin Kim Y., Lee W., Moon T., Seong Hwang C. // Appl. Phys. Lett. 2013. V. 102. P. 242905. https://doi.org/10.1063/1.4811483
- 11. Chernikova A., Kozodaev M., Markeev A., Negrov D., Spiridonov M., Zarubin S., Bak O., Buragohain P., Lu H., Suvorova E., Gruverman A., Zenkevich A. // ACS Appl. Mater. Interfaces. 2016. V. 11. P. 7232. https://doi.org/10.1021/acsami.5b11653
- 12. Chouprik A., Zakharchenko S., Spiridonov M., Zarubin S., Chernikova A., Kirtaev R., Buragohain P., Gruverman A., Zenkevich A., Negrov D. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 8818. https://doi.org/10.1021/acsami.7b17482
- 13. Zarubin S., Suvorova E., Spiridonov M., Negrov D., Chernikova A., Markeev A., Zenkevich A. // Appl. Phys. Lett. 2016. V. 109. P. 192903. https://doi.org/10.1063/1.4966219
- 14. Hwang C.S. // Adv. Electron. Mater. 2015. V. one. P. 1400056. https://doi.org/10.1002/aelm.201400056
- 15. Kim S. K., Popovici M. // MRS Bull. 2018. V. 43. P. 334. https://doi.org/10.1557/mrs.2018.95
- 16. Pešić M., Fengler F.P.G., Larcher L., Padovani A., Schenk T., Grimley E.D., Sang X., LeBeau J.M., Slesazeck S., Schroeder U. and Mikolajick T. // Adv. Funct. Mater. 2016. V. 26. P. 4601. https://doi.org/10.1002/adfm.201600590
- 17. Hamouda W., Pancotti A., Lubin C., Tortech L., Richter C., Mikolajick T., Schroeder U., Barrett N. // J. Appl. Phys. 2020. V. 127. P. 064105. https://doi.org/10.1063/1.5128502
- 18. Chouprik A., Negrov D., Tsymbal E., Zenkevich A. // Nanoscale. 2021. V. 13. P. 11635. https://doi.org/10.1039/D1NR01260F
- 19. Koroleva A.A., Chernikova A.G., Zarubin S.S., Korostylev E.V., Khakimov R.R., Zhuk M.Yu., Markeev A.M. // ACS Omega. 2022. V. seven. № 50. P. 47084. https://doi.org/10.1021/acsomega.2c06237
- 20. Colla E.L., Taylor D.V., Tagantsev A.K., Setter N. // Appl. Phys. Lett. 1998. V. 72. № 19. P. 2478. https://doi.org/10.1063/1.121386
- 21. Stohr J. NEXAFS Spectroscopy. Vol. 25. Springer Berlin Heidelberg, 1992.
- 22. Filatova E.O., Sokolov A.A. // J. Synchrotron Radiat. 2018. V. 25. P. 232. https://doi.org/10.1107/S1600577517016253
- 23. Filatova E.O., Sokolov A.A., Kozhevnikov I.V., Taracheva E.Y., Grunsky O.S., Schaefers F., Braun W. // J. Phys. Condens. Matter. 2009. V. 21. P. 185012. https://doi.org/10.1088/0953-8984/21/18/185012
- 24. Dmitriyeva A.V., Zarubin S.S., Konashuk A.S., Kasatikov S.A., Popov V.V., Zenkevich A.V. // J. Appl. Phys. 2023. V. 133. P. 054103. https://doi.org/10.1063/5.0131893
- 25. Cheema S.S., Kwon D., Shanker N., dos Reis R., Hsu S.-L., Xiao J., Zhang H., Wagner R., Datar A., McCarter M.R., Serrao C.R., Yadav A.K., Karbasian G., Hsu C.-H., Tan A.J., Wang L.-C., Thakare V., Zhang X., Mehta A., Karapetrova E., Chopdekar R.V, Shafer P., Arenholz E., Hu C., Proksch R., Ramesh R., Ciston J., Salahuddin S. // Nature. 2020. V. 580. P. 478. https://doi.org/10.1038/s41586-020-2208-x
- 26. Kozodaev M.G., Chernikova A.G., Korostylev E.V., Park M.H., Khakimov R.R., Hwang C.S., Markeev A.M. // 2019. J. Appl. Phys. V. 125. P. 034101. https://doi.org/10.1063/1.5050700
- 27. Lebedev A.M., Menshikov K.A., Nazin V.G., Stankevich V.G., Tsetlin M.B., Chumakov R.G. // J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 2021. V. 15. P. 1039. https://doi.org/10.1134/S1027451021050335
- 28. Henke B.L., Gullikson E.M., Davis J.C. // Atomic Data and Nuclear Data Tables. 1993. V. 54. № 2. P. 181. https://doi.org/10.1006/adnd.1993.1013
- 29. Vasić R., Consiglio S., Clark R. D., Tapily K., Sallis S., Chen B., Newby, Jr. D., Medikonda M., Muthinti G.R., Bersch E., Jordan-Sweet J., Lavoie C., Leusink G.J., Diebold A.C. // J. Appl. Phys. V. 2013. 113. P. 234101. https://doi.org/10.1063/1.4811446
- 30. Jain A., Ong S. P., Hautier G., Chen W., Davidson Richards W., Dacek S., Cholia S., Gunter D., Skinner D., Ceder G., Persson K.A. // APL Mater. 2013. V. 1. P. 011002. https://doi.org/10.1063/1.4812323
- 31. Cho D.-Y., Jung H.-S., Hwang C. S. // 2010. Phys. Rev. B. V. 82. P. 094104. https://doi.org/10.1103/PhysRevB.82.094104
- 32. Martin D., Muller J., Schenk T., Arruda T.M., Kumar A., Strelcov E., Yurchuk E., Muller S., Pohl D., Schroder U., Kalinin S.V., Mikolajick T. // Adv. Mater. 2014. V. 26. P. 8198. https://doi.org/10.1002/adma.201403115
- 33. Lederer M., Abdulazhanov S., Olivo R., Lehninger D., Kampfe T., Seidel K., Eng L. M. // Sci. Rep. 2021. V. 11. P. 22266. https://doi.org/10.1038/s41598-021-01724-2
- 34. Lomenzo P.D., Takmeel Q., Zhou C., Fancher C.M., Lambers E., Rudawski N.G., Jones J.L., Moghaddam S., Nishida T. // J. Appl. Phys. 2015. V. 117. P. 134105. https://doi.org/10.1063/1.4916715
- 35. Kim H.J., Park M.H., Kim Y.J., Lee Y.H., Moon T., Kim K.D., Hyun S.D., Hwang C.S. // Nanoscale. 2016. V. 8. P. 1383. https://doi.org/10.1039/C5NR05339K
- 36. Grimley E.D., Schenk T., Sang X., Pešić M., Schroeder U., Mikolajick T., LeBeau J.M. // Adv. Electron. Mater. 2016. V. 2. P. 1600173. https://doi.org/10.1002/aelm.201600173
- 37. Pešić M., Fengler F.P.G., Larcher L., Padovani A., Schenk T., Grimley E.D., Sang X., LeBeau J.M., Slesazeck S., Schroeder U., Mikolajick T. // Adv. Funct. Mater. 2016. V. 26. P. 4601. https://doi.org/10.1002/adfm.201600590
- 38. Chouprik A., Zakharchenko S., Spiridonov M., Zarubin S., Chernikova A., Kirtaev R., Buragohain P., Gruverman A., Zenkevich A., Negrov D. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 8818. https://doi.org/10.1021/acsami.7b17482