RAS PhysicsПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

Investigation of Elastic Light-Emitting Diode Based on CsPbBr Perovskite Film, Crystallized on a Gallium Phosphide Nanowires Array

PII
S30345731S1028096025030147-1
DOI
10.7868/S3034573125030147
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
87-96
Abstract
Recently, there has been rapid development of technologies for creating flexible and stretchable optoelectronic devices. A promising material in terms of fundamental properties is the inorganic halide perovskite CsPbBr, whose electroluminescence brightness can reach 45.000 cd/m. However, the most common thin-film technology of perovskite-based devices cannot solve a number of significant problems: ensuring the stability of the perovskite to the environment, creating tensile-resistant contacts, ensuring efficient injection of carriers into the electroluminescent layer, etc. To solve these problems, the authors developed a new device architecture based on a distributed electrode, which uses an array of whisker nanocrystals embedded in the light-emitting layer, thus solving the fundamental problem of the short lifetime of CsPbBr carriers. The device is enclosed in a special silicone polymer - a transparent inert flexible and stretchable matrix that protects the CsPbBr perovskite from environmental conditions and maintains the orientation of the arrays of whisker nanocrystals. 90% transparent single-walled carbon nanotubes, which have a high tensile strength and low electrical resistance, were used as an electrode providing lateral transport of carriers. Thus, a flexible device with high electroluminescence efficiency was obtained.
Keywords
оптоэлектронное устройство электрохимическая ячейка перовскит CsPbBr нитевидные нанокристаллы GaP одностенные углеродные нанотрубки полидиметилсилоксан гибкость растяжимость
Date of publication
23.12.2025
Year of publication
2025
Number of purchasers
0
Views
49

References

  1. 1. Corzo D., Tostado-Blázquez G., Baran D. // Frontiers in Electronics. 2020. V. 1. https://doi.org/10.3389/felec.2020.594003
  2. 2. Song Y.M., Xie Y., Malyarchuk V., Xiao J., Jung I., Choi K.-J., Liu Z., Park H., Lu C., Kim R.-H., Li R., Crozier K.B., Huang Y., Rogers J.A. // Nature. 2013. V. 497. Iss. 7447. P. 95. https://doi.org/10.1038/nature12083
  3. 3. Park S.-I., Xiong Y., Kim R.-H., Elvikis P., Meitl M., Kim D.-H., Wu J., Yoon J., Yu C.-J., Liu Z., Huang Y., Hwang K., Ferreira P., Li X., Choquette K., Rogers J.A. // Science. 2009. V. 325. Iss. 5943. P. 977. https://doi.org/10.1126/science.1175690
  4. 4. Amruth C., Luszczynska B., Rekab W., Szymanski M.Z., Ulanski J. // Polymers. 2020. V. 13. Iss. 1. P. 80. https://doi.org/10.3390/polym13010080
  5. 5. Gustafsson G., Cao Y., Treacy G.M., Klavetter F., Colaneri N., Heeger A. // Nature. 1992. V. 357. Iss. 6378. P. 477. https://doi.org/10.1038/357477a0
  6. 6. Geffroy B., le Roy Ph., Prat Ch. // Polymer Int. 2006. V. 55. Iss. 6. P. 572. https://doi.org/10.1002/pi.1974
  7. 7. Tankelevičiūtė E., Samuel I.D.W., Zysman-Colman E. // J. Phys. Chem. Lett. 2024. V. 15. Iss. 4. P. 1034. https://doi.org/10.1021/acs.jpclett.3c03317
  8. 8. Pietryga J.M., Park Y.-S., Lim J., Fidler A.F., Bae W.K., Brovelli S., Klimov V.I. // Chem. Rev. 2016. V. 116. Iss. 18. P. 10513. https://doi.org/10.1021/acs.chemrev.6b00169
  9. 9. Zhang J., Hodes G., Jin Zh., Liu Sh. // J. German Chem. Soc. 2024. V. 58. Iss. 44. P. 15596. https://doi.org/10.1002/anie.201901081
  10. 10. Song J., Li J., Li X., Xu L., Dong Y., Zeng H. // Adv. Mater. 2015. V. 27. Iss. 44. P. 7162. https://doi.org/10.1002/adma.201502567
  11. 11. Lu M., Zhang Y., Wang S., Guo J., Yu W.W., Rogach A.L. // Adv. Funct. Mater. 2019. V. 29. Iss. 30. P. 1902008. https://doi.org/10.1002/adfm.201902008
  12. 12. Liashenko T.G., Cherotchenko E.D., Pushkarev A.P., Pakštas V., Naujokaitis A., Khubezhov S.A., Polozkov R.G., Agapev K.B., Zakhidov A.A., Shelykh I.A., Makarov S.V. // Phys. Chem. Chem. Phys. 2019. V. 21. Iss. 35. P. 18930. https://doi.org/10.1039/C9CP03656C
  13. 13. Dey A., Ye J., De A., Debroye E., Ha S.K., Bladt E., Kshirsagar A.S., Wang Z., Yin J., Wang Y., Quan L.N., Yan F., Gao M., Li X., Shamsi J., Debnath T., Cao M., Scheel M.A., Kumar S., Steele J.A., Gerhard M., Chouhan L., Xu K., Wu X., Li Y., Zhang Y., Dutta A., Han C., Vincon I., Rogach A.L., Nag A., Samanta A., Korgel B.A., Shih C.-J., Gamelin D.R., Son D.H., Zeng H., Zhong H., Sun H., Demir H.V., Scheblykin I.G., Mora-Seró I., Stolarczyk J.K., Zhang J.Z., Feldmann J., Hofkens J., Luther J.M., Pérez-Prieto J., Li L., Manna L., Bodnarchuk M.I., Kovalenko M.V., Roeffaers M.B.J., Pradhan N., Mohammed O.F., Bakr O.M., Yang P., Müller-Buschbaum P., Kamat P.V., Bao Q., Zhang Q., Krahne R., Galian R.E., Stranks S. D., Bals S., Biju V., Tisdale W.A., Yan Y., Hoye R.L.Z., Polavarapu L. // ACS Nano. 2021. V. 15. Iss. 7. P. 10775. https://doi.org/10.1021/acsnano.0c08903
  14. 14. Kovalenko M.V., Protesescu L., Bodnarchuk M.I. // Science. 2017. V. 358. Iss. 6364. P. 745. https://doi.org/10.1126/science.aam7093
  15. 15. Mohapatra A., Kar M.R., Bhaumik S. // Frontiers in Electronic Materials. 2022. V. 2. https://doi.org/10.3389/femat.2022.891983
  16. 16. Zhao X., Ng J.D.A., Friend R.H., Tan Z.-K. // ACS Photonics. 2018. V. 5. Iss. 10. P. 3866. https://doi.org/10.1021/acsphotonics.8b00745
  17. 17. Wei Z., Xing J. // J. Phys. Chem. Lett. 2019. V. 10. Iss. 11. P. 3035. https://doi.org/10.1021/acs.jpclett.9b00277
  18. 18. Zhang L., Mei L., Wang K., Lv Y., Zhang S., Lian Y., Liu X., Ma Z., Xiao G., Liu Q., Zhai S., Zhang S., Liu G., Yuan L., Guo B., Chen Z., Wei K., Liu A., Yue S., Niu G., Pan X., Sun J., Hua Y., Wu W.-Q., Di D., Zhao B., Tian J., Wang Z., Yang Y., Chu L., Yuan M., Zeng H., Yip H.-L., Yan K., Xu W., Zhu L., Zhang W., Xing G., Gao F., Ding L. // Nanomicro Lett. 2023. V. 15. Iss. 1. P. 177. https://doi.org/10.1007/s40820-023-01140-3
  19. 19. Huo C., Fong Ch.F., Amara M.-R., Huang Y., Chen B., Zhang H., Guo L., Li H., Huang W., Diederichs C., Xiong Q. // Nano Lett. 2020. V. 20. Iss. 5. P. 3673. https://doi.org/10.1021/acs.nanolett.0c00611
  20. 20. Xiang S., Fu Zh., Li W., Wei Y., Liu J., Liu H., Zhang R., Zhu L., Chen H. // ACS Energy Lett. 2018. V. 3. Iss. 8. P. 1824. https://doi.org/10.1021/acsenergylett.8b00820
  21. 21. Peters J.A., Liu Zh., de Siena M.C., Kanatzidis M.G., Wessels B.W. // J. Luminescence. 2022. V. 243. P. 118661. https://doi.org/10.1016/j.jlumin.2021.118661
  22. 22. Cheng L.-P., Huang J.-Sh., Shen Y., Li G.-P., Liu X. K., Li W., Wang Y.-H., Li Y.-Q., Jiang Y., Gao F., Lee Ch.-S., Tang J.-X. // Adv. Opt. Mater. 2018. V. 7. Iss. 4. P. 1801534. https://doi.org/10.1002/adom.201801534
  23. 23. Jathar S.B., Rondiya S.R., Bade B.R., Nasane M.P., Barma S.V., Jadhav Y.A., Rokade A.V., Kore K.B., Nilegave D.S., Tandale P.U., Jadkar S.R., Funde A.M. // ES Mater. Manufacturing. 2021. V. 12. P. 72. https://doi.org/10.30919/esmm5f1036
  24. 24. Gualdrón-Reyes A.F., Yoon S.J., Barea E.M., Agouram S., Muñoz-Sanjosé V., Meléndez Á.M., Niño-Gómez M.E., Mora-Seró I. // ACS Energy Lett. 2018. V. 4. Iss. 1. P. 54. https://doi.org/10.1021/acsenergylett.8b02207
  25. 25. Nasibulin A.G., Moisala A., Brown D.P., Jiang H., Kauppinen E.I. // Chem. Phys. Lett. 2005. V.402. Iss. 1-3. P. 227. https://doi.org/10.1016/j.cplett.2004.12.040
  26. 26. Gilshtein E., Nasibulin A.G. Aerosol synthesized carbon nanotube films for stretchable electronic applications. // IEEE NANO. 2015, Rome, Italy. P. 893.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library