RAS PhysicsПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

Change in the Charge State of MOS Structures under Radiation and High-Field Injection at Constant Voltage

PII
S30345731S1028096025030104-1
DOI
10.7868/S3034573125030104
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
62-68
Abstract
The features of radiation-induced positive charge accumulation in the gate dielectric film under high-field injection of electrons at the constant voltage are studied. The conditions are determined, under which the current injection mode can be used to increase the dose sensitivity of MOS (metal-oxide-semiconductor) and RADFET (Radiation sensing Field Effect Transistor) sensors. The model describing physical effects taking place in the gate dielectric and at the MOS structure interfaces under concurrent influence of radiation and high-field injection of electrons at constant voltage are improved. It is shown that the absorbed radiation dose at constant voltage on the sample can be calculated from changes in the current density of high-field electron injection. This dose can increase by several orders of magnitude due to the accumulation of radiation-induced positive charge in the gate dielectric. The influence of radiation intensity on the accumulation of radiation-induced positive charge in the gate dielectric of MOS sensors is determined.
Keywords
МОП-структура радиационное излучение сильнополевая инжекция электронов подзатворный диэлектрик сенсор радиационного излучения
Date of publication
23.12.2025
Year of publication
2025
Number of purchasers
0
Views
47

References

  1. 1. Yilmaz E., Kaleli B., Turan R. // Nucl. Instrum. Methods Phys. Res. B. 2007. V. 264. P. 287. http://doi.org/10.1016/j.nimb.2007.08.081
  2. 2. Kahraman A., Yilmaz E., Aktag A., Kaya S. // IEEE Trans. Nucl. Sci. 2016. V. 63. № 2. P. 1284. http://doi.org/10.1109/TNS.2016.2524625
  3. 3. Aktağ A., Yilmaz E., Mogaddam N.A.P., Aygün G., Cantas A., Turan R. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 268. № 22. P. 3417. http://doi.org/10.1016/j.nimb.2010.09.007
  4. 4. Yilmaz E., Turan R. // Sensors Actuators. A. 2008. V. 141. № 1. Р. 1. http://doi.org/10.1016/j.sna.2007.07.001
  5. 5. Holmes-Siedle A., Adams L. // Radiat. Phys. Chem. 1986. V. 28. P. 235. http://doi.org/10.1016/1359-0197 (86)90134-7
  6. 6. Pejović M.M. // Radiat. Phys. Chem. 2017. V. 130. P. 221. http://doi.org/10.1016/j.radphyschem.2016.08.027
  7. 7. Ristic G.S., Vasovic N.D., Kovacevic M., Jaksic A.B. // Nucl. Instrum. Methods Phys. Res. B. 2011. V. 269. P. 2703. http://doi.org/10.1016/j.nimb.2011.08.015
  8. 8. Ristic G.S., Ilic S.D., Andjelkovic M.S., Duane R., Palma A.J., Lalena A.M., Krstic M.D., Jaksic A.B. // Nuclear Instrum. Methods Phys. Res. A. 2022. V. 1029. P. 166473. http://doi.org/10.1016/j.nima.2022.166473
  9. 9. Lipovetzky J., Holmes-Siedle A., Inza M.G., Carbonetto S., Redin E., Faigon A. // IEEE Trans. Nucl. Sci. 2012. V. 59. P. 3133. http://doi.org/10.1109/TNS.2012.2222667
  10. 10. Siebel O.F., Pereira J.G., Souza R.S., Ramirez-Fernandez F.J., Schneider M.C., Galup-Montoro C. // Radiat. Measur. 2015. V. 75. P. 53. http://doi.org/10.1016/j.radmeas.2015.03.004
  11. 11. Kulhar M., Dhoot K., Pandya A. // IEEE Trans. Nucl. Sci. 2019. V. 66. P. 2220. http://doi.org/10.1109/TNS.2019.2942955
  12. 12. Camanzi B., Holmes-Siedle A.G. // Nature Mater. 2008. V. seven. P. 343. http://doi.org/10.1038/nmat2159
  13. 13. Oldham T.R., McLean F.B. // IEEE Trans. Nucl. Sci. 2003. V. 50. P. 483. http://doi.org/10.1109/TNS.2003.812927
  14. 14. Schwank J.R., Shaneyfelt M.R., Fleetwood D.M., Felix J.A., Dodd P.E., Paillet P., Ferlet-Cavrois V. // IEEE Trans. Nucl. Sci. 2008. V. 55. P. 1833. http://doi.org/10.1109/TNS.2008.2001040
  15. 15. Lipovetzky J., Redin E.G., Faigon A. // IEEE Trans. Nucl. Sci. 2007. V. 54. P. 1244. http://doi.org/10.1109/TNS.2007.895122
  16. 16. Peng L., Hu D., Jia Y., Wu Y., An P., Jia G. // IEEE Trans. Nucl. Sci. 2017. V. 64. P. 2633. http://doi.org/10.1109/TNS.2017.2744679
  17. 17. Andreev D.V., Bondarenko G.G., Andreev V.V., Stolyarov A.A. // Sensors. 2020. V. 20. P. 2382. http://doi.org/10.3390/s20082382
  18. 18. Andreev V.V., Maslovsky V.M., Andreev D.V., Stolyarov A.A. // Proc. SPIE. 2019. V. 11022. P. 1102207. http://doi.org/10.1117/12.2521985
  19. 19. Andreev D.V., Bondarenko G.G., Andreev V.V. // J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2023. V. 17. P. 48. http://doi.org/10.1134/S1027451023010056
  20. 20. Lai S.K. // J. Appl. Phys. 1983. V. 54. P. 2540. http://doi.org/10.1063/1.332323
  21. 21. Arnold D., Cartier E., DiMaria D.J. // Phys. Rev. B. 1994. V. 49. P. 10278. http://doi.org/10.1103/PhysRevB.49.10278
  22. 22. Strong A.W., Wu E.Y., Vollertsen R., Sune J., Rosa G.L., Rauch S.E., Sullivan T.D. Reliability Wearout Mechanisms in Advanced CMOS Technologies. Wiley-IEEE Press, 2009. 624 p.
  23. 23. Palumbo F., Wen C., Lombardo S., Pazos S., Aguirre F., Eizenberg M., Hui F., Lanza M. // Adv. Funct. Mater. 2019. V. 29. P. 1900657. http://doi.org/10.1002/adfm.201900657
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library