ОФНПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

ВОЗДЕЙСТВИЕ МОЩНОГО ИОННОГО ПУЧКА НАНОСЕКУНДНОЙ ДЛИТЕЛЬНОСТИ НА ПРОМЫШЛЕННУЮ КЕРАМИКУ AlN

Код статьи
S30345731S1028096025030095-1
DOI
10.7868/S3034573125030095
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 3
Страницы
57-61
Аннотация
Исследовано разрушение и изменение элементного состава поверхностных слоев алюмонитридной керамики при воздействии мощного ионного пучка наносекундной длительности. Определены пространственные характеристики поверхностного разрушения керамики. Разрушение происходит преимущественно по границам частиц (кристаллитов), из которых спекается керамика. Наблюдается полное удаление части таких частиц из поверхностного слоя как при однократном, так и при многократном облучении с плотностью тока 150 А/см. Обнаружено образование капель полусферической формы различных размеров как на облученной поверхности керамики, так и на поверхности после удаления фрагмента разрушения (при многократном облучении). Установлено обеднение поверхностного слоя керамики азотом. Обсуждены возможные механизмы наблюдаемых изменений в поверхностном слое керамики.
Ключевые слова
мощный ионный пучок алюмонитридная керамика морфология поверхности плавление элементный состав
Дата публикации
15.09.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
40

Библиография

  1. 1. Anandkumar M., Trofimov E. // J. Alloys Compd. 2023. V. 960. P. 170690. http://doi/org/10.1016/j.jallcom.2023.170690
  2. 2. Vaiani L., Boccaccio A., Uva A.E., Palumbo G., Piccininni A., Guglielmi P., Cantore S., Santacroce L., Charitos I.A., Ballini A. // J. Funct. Biomater. 2023. V. 14. P. 146. http://doi/org/10.3390/jfb14030146
  3. 3. Nisar A., Hassan R., Agarwal A., Balani K. // Ceram. Int. 2022. V. 48. P. 8852. http://doi/org/10.1016/j.ceramint.2021.12.199
  4. 4. Sokovkin S.Yu., Balezin M.E. // Nucl. Instrum. Methods Phys. Res. B. 2020. V. 978. P. 164466. http://doi/org/10.1016/j.nima.2020.164466
  5. 5. Ebert J.N., Rheinheimer W. // Open Ceram. 2022. V. 11. P. 100280. http://doi/org/10.1016/j.oceram.2022.100280
  6. 6. Lizcano M., Williams T.S., Shin E.-S.E., Santiago, D., Nguyen B. // Materials. 2022. V. 15. P. 8121. http://doi/org/10.3390/ma15228121
  7. 7. Remnev G.E., Isakov I.F., Opekounov M.S. et al. // Surf. Coat. Technol. 1999. V. 114. P. 206. http://doi/org/10.1016/S0257-8972 (99)00058-4
  8. 8. Remnev G.E., Tarbokov V.A., Pavlov S.K. // Inorg. Mater. Appl. Res. 2022. V. 13. P. 62. http://doi/org/10.1134/S2075113322030327
  9. 9. Uglov V.V., Remnev G.E., Kuleshov A.K., Astashinski V.M., Saltymakov M.S. // Surf. Coat. Technol. 2010. V. 204. P. 1952. http://doi/org/10.1016/j.surfcoat.2009.09.039
  10. 10. Kovivchak V.S., Panova T.V., Burlakov R.B. // J. Surf. Invest. X-Ray, Synchrotron, Neutron Tech. 2008. V. 2. P. 200. http://doi/org/10.1134/S1027451008020079
  11. 11. Kovivchak V.S., Panova T.V., Krivozubov O.V., Davletkil’deev N.A., Knyazev E.V. // J. Surf. Invest. X-Ray, Synchrotron, Neutron Tech. 2012. V. 6. P. 244. http://doi/org/10.1134/S1027451012030123
  12. 12. Kovivchak V.S., Panova T.V. // J. Surf. Invest. X-Ray, Synchrotron, Neutron Tech. 2019. V. 13. P. 1252. http://doi/org/10.1134/S1027451019060363
  13. 13. Liang G., Shen J., Zhang J. et al. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 409. P. 277. http://doi/org/10.1016/j.nimb.2017.04.048
  14. 14. Shen J., Shahid I., Yu X. et al. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 413. P. 6. http://doi/org/10.1016/j.nimb.2017.09.031
  15. 15. Romanov I.G., Tsareva I.N. // Tech. Phys. Lett. 2001. V. 27. P. 695. http://doi/org/10.1134/1.1398972
  16. 16. Nakano H., Watari K., Hayashi H., Urabe K. // J. Am. Ceram. Soc. 2004. V. 85. P. 3093. http://doi/org/10.1111/j.1151-2916.2002.tb00587.x
  17. 17. De Faoite D., Browne D.J., Chang-Díaz F.R. et al. // J. Mater. Sci. 2012. V. 47. P. 4211. http://doi/org/10.1007/s10853-011-6140-1
  18. 18. Goldstein J.I., Newbury D.E., Echlin P. et al. Scanning Electron Microscopy and X-Ray Microanalysis. New York: Kluwer acad. /Plenum publ., 2003. 689 p.
  19. 19. Ghyngazov S., Pavlov S., Kostenko V., Surzhikov A. // Nucl. Instrum. Methods Phys. Res. B. 2018. V. 434. P. 120. http://doi/org/10.1016/j.nimb.2018.08.037
  20. 20. Kostenko V., Pavlov S., Nikolaeva S. // IOP Conf. Ser.: Mater. Sci. Eng. 2018. V. 289. P. 012019. http://doi/org/10.1088/1757-899X/289/1/012019
  21. 21. Ghyngazov S.А., Boltueva V.А. // Ceram. Int. 2023. V. 49. P. 37061. http://doi/org/10.1016/j.ceramint.2023.09.099
  22. 22. Ghyngazov S., Kostenko V., Shevelev S., Lysenko E., Surzhikov A. // Nucl. Instrum. Methods Phys. Res. B. 2020. V. 464. P. 89. http://doi/org/10.1016/j.nimb.2019.12.013
  23. 23. Zhang S., Yu X., Zhang J. et al. // Vacuum. 2021. V. 187. P. 110154. http://doi/org/10.1016/j.vacuum.2021.110154
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека