RAS PhysicsПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

Influence of UV and Visible Radiation on Optical Properties of Coatings Based on Two-Layer Hollow Particles of Silicon Dioxide and Zinc Oxide

PII
S30345731S1028096025030087-1
DOI
10.7868/S3034573125030087
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
51-56
Abstract
A comparative analysis in situ of diffuse reflection spectra in the range from 200 to 2500 nm and their changes after irradiation of coatings based on polymethylphenylsiloxane resin and pigment powders of two-layer hollow particles ZnO/SiO and SiO/ZnO was carried out. Irradiation was performed with light from a xenon arc lamp simulating the solar radiation spectrum, with an intensity of 3 e.s.i. (equivalent of solar irradiation, 1 e.s.i.=0.139 W/cm). The photostability of the studied coatings based on two-layer hollow ZnO/SiO and SiO/ZnO particles was estimated relative to coatings based on ZnO polycrystals from an analysis of the difference diffuse reflectance spectra obtained by subtracting the spectra of unirradiated and irradiated samples. It has been found that the intensity of the induced absorption bands in coatings based on ZnO/SiO and SiO/ZnO hollow particles is lower than in coatings based on ZnO microparticles, and the radiation resistance when assessing changes in solar absorptance (Δα) is twice as high. The increase in photostability is probably determined by the different nature of defect accumulation: for bulk microparticles, radiation defects can accumulate inside the grains, while in hollow particles, the accumulation of defects can occur only within the thin shell of the sphere.
Keywords
оксид цинка диоксид кремния покрытия полиметилфенилсилоксановая смола полые частицы спектры диффузного отражения фотостойкость
Date of publication
22.08.2024
Year of publication
2024
Number of purchasers
0
Views
52

References

  1. 1. Li C., Liang Z., Xiao H., Wu Y., Liu Y. // Mater. Lett. 2010. V. 64. № 18. P. 1972. https://doi.org/10.1016/j.matlet.2010.06.027
  2. 2. Wang Y., Sunkara B., Zhan J., He J., Miao L., McPherson G.L., John V.T., Spinu L. // Langmuir. 2012. V. 28. P. 13783. https://doi.org/10.1021/la302841c
  3. 3. Rasmidi R., Duinong M., Chee F.P. // Radiat. Phys. Chem. 2021. V. 184. P. 109455. https://doi.org/10.1016/j.radphyschem.2021.109455
  4. 4. Li C., Mikhailov M.M., Neshchimenko V.V. // Nucl. Instrum. Methods Phys. Res. B. 2014. V. 319. P. 123. https://doi.org/10.1016/j.nimb.2013.11.007
  5. 5. Zatsepin A.F., Kortov V.S., Biryukov D.Y. // Radiat. Eff. Def. Solids. 2002. V. 157. P. 595. https://doi.org/10.1080/10420150215765
  6. 6. Nishikawa H., Watanabe E., Ito D., Ohki Y. // J. Non-cryst. Solids. 1994. V. 179. P. 179. https://doi.org/10.1016/0022-3093 (94)90695-5
  7. 7. Boscaino R., Cannas M., Gelardi F.M., Leone M. // Nucl. Instrum. Methods. Phys. Res. B. 1996. V. 116. P. 373. https://doi.org/10.1016/0168-583X (96)00073-0
  8. 8. Radtsig R.A.B., Senchenya I.N. // Russ. Chem. Bull. 1996. V. 45. P. 1849. https://doi.org/10.1007/BF01457762
  9. 9. Skuja L. // J. Non-Cryst. Solids. 1998. V. 239. P. 16. https://doi.org/10.1016/S0022-3093 (98)00720-0
  10. 10. Pantelides S.T., Lu Z.-Y., Nicklaw C., Bakos T., Rashkeev S.N., Fleetwood D.M., Schrimpf R.D. // J. Non-Cryst. Solids. 2008. V. 354. P. 217. https://doi.org/10.1016/j.jnoncrysol.2007.08.080
  11. 11. Erhart P., Albe K., Klein A. // Phys. Rev. B. 2006. V. 73. P. 205203. https://doi.org/10.1103/PhysRevB.73.205203
  12. 12. Oba F., Togo A., Tanaka I., Paier J., Kresse G. // Phys. Rev. B. 2008. V. 77. P. 245202. https://doi.org/10.1103/PhysRevB.77.245202
  13. 13. Lima S.A.M., Sigoli F.A., Jafelicci M.Jr., Davolos M.R. // Int. J. Inorg. Mater. 2001. V. 3. P. 749. https://doi.org/10.1016/S1466-6049 (01)00055-1
  14. 14. Hu J., Pan B.C. // J. Chem. Phys. 2008. V. 129. P. 154706. https://doi.org/10.1063/1.2993166
  15. 15. Sun Y., Wang H. // Physica B. 2003. V. 325. P. 157. https://doi.org/10.1016/S0921-4526 (02)01517-X
  16. 16. Lin B., Fu Z., Jia Y. // Appl. Phys. Lett. 2001. V. 79. P. 943. https://doi.org/10.1063/1.1394173
  17. 17. Дудин А.Н., Юрина В.Ю., Михайлов М.М., Ли Ч., Нещименко В.В. // Изв. вузов. Физика. 2023. Т. 66. № 7 (788). С. 117. https://doi.org/10.17223/00213411/66/7/14
  18. 18. Дудин А.Н., Нещименко В.В., Ли Ч. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 4. С. 70. https://doi.org/10.31857/S1028096022040069
  19. 19. Kositsyn L.G., Mikhailov M.M., Kuznetsov N.Y., Dvoretskii M.I. // Instrum. Experim. Tech. 1985. V. 28. P. 929.
  20. 20. ASTM E490-00a Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables. 2019.
  21. 21. ASTM E903-96 Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres. 2005.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library