- PII
- S30345731S1028096025020145-1
- DOI
- 10.7868/S3034573125020145
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 2
- Pages
- 119-123
- Abstract
- A compact two-dimensional high-resolution detector for X-ray imaging has been developed. The main elements of the detector are a 20-µm-thick LuAG:Ce scintillation crystal and a monochrome CMOS sensor with a resolution of 20 MP and a shooting rate of up to 20 frame/s. The detector efficiency has been estimated on an Excillium MetalJet D2 laboratory source with a GaIn liquid anode. The objects of study were a copper mesh with a 25.4 µm period and a test structure made of tantalum, 500 nm thick, with a radially decreasing pattern (Siemens star). Additionally, radiography of a biological object (centipede) was carried out. The spatial resolution of the detector was less than 3 µm.
- Keywords
- детектор рентгеновское излучение визуализация рентгеновского излучения высокоразрешающая визуализация сцинтиллятор рентгеновский детектор синхротронное излучение
- Date of publication
- 22.10.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 46
References
- 1. Töpperwien M., Krenkel M., Vincenz D. // Sci Rep. 2017. V. 7. Р. 42847. http://doi/org/10.1038/srep42847
- 2. Peng Z.Y., Gu Y.T., Xie Y.G. et al. // Radiat. Detect. Technol. Methods. 2018. V. 2. P. 26. http://doi/org/10.1007/s41605-018-0058-y
- 3. Snigirev A., Koch A., Raven С., Spanne P. // J. Opt. Soc. Am. A. 1998. V. 15. P. 1940. http://doi/org/10.1364/JOSAA.15.001940
- 4. Riva F. // Development of New Thin Film Scintillators for High-Resolution X-Ray Imaging. Physics. Université de Lyon, 2016. P. 149.
- 5. Lecoq P., Gektin A., Korzhik M. Annenkov A., Pedrini C. Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering. Switzerland: Springer Cham, 2006. http://doi/org/10.1007/3-540-27768-4
- 6. Martin T., Koch A., Nikl M. // MRS Bull. 2017. V. 42. P. 451. Doi: 10.1557/mrs.2017.11
- 7. Martin T., Douissard P., Couchaud M, Cecilia A., Baumbach T., Dupré K., Rack A. // IEEE Trans. Nucl. Sci. 2009. V. 56. № 3. P. 1412. http://doi/org/10.1109/TNS.2009.2015878
- 8. Lei L., Wang Y., Kuzmin A., Hua Y., Zhao J., Xu S., PrasadP. // eLight. 2022. V. 2. P. 17. http://doi/org/10.1186/s43593-022-00024-0
- 9. Nikl M. // Meas. Sci. Technol. 2006. V. 17. № 4. P. R37. http://doi/org/10.1088/0957-0233/17/4/R01
- 10. Zhu D., Nikl M., Chewpraditkul W., Li J. // J. Adv. Ceram. 2022. V. 11. P. 1825. http://doi/org/10.1007/s40145-022-0660-9
- 11. Datta A., Fiala J., Motakef S. // Sci. Rep. 2021. V. 11. P. 22897. http://doi/org/10.1038/s41598-021-02378-w
- 12. Grachev E., Trubitsyn A., Manoshkin A., Ivanov V. X-ray Camera Based on CMOS Sensor // 8th Mediterranean Conference on Embedded Computing (MECO). Budva, Montenegro, 2019. P. 1. http://doi/org/10.1109/MECO.2019.8760193
- 13. Uesugi K., Hoshino M., Yagi N. // J. Synchrotron Radiat. 2011. V. 18. P. 217. http://doi/org/10.1107/S0909049510044523
- 14. https://rigaku.com/
- 15. https://optiquepeter.com/
- 16. https://www.hamamatsu.com/
- 17. Barannikov A., Shevyrtalov S., Zverev D., Narikovich A. // Proc. SPIE. 2021. V. 11776. P. 117760D. https://doi.org/10.1117/12.2582687
- 18. https://keytech.ntt-at.co.jp/en/xray/prd_0024.html
- 19. Fakhri S.A., Motayyeb S., Saadatseresht M., Zakeri H., Mousavi V. // ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2023. V. 4. P. 143. http://doi/org/10.5194/isprs-annals-X-4-W1-2022-143-2023
- 20. Seibert J.A., Boone J.M., Lindfors K.K. // Proc. SPIE. 1998. V. 3336. P. 348. http://doi/org/10.1117/12.317034