RAS PhysicsПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

Scattering of Polymer Coatings by High Fluence Oxygen Plasma Flow

PII
S30345731S1028096025020042-1
DOI
10.7868/S3034573125020042
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
25-31
Abstract
Polymer coatings are used on the surface of low Earth orbit spacecraft, where they are aggressively exposed to the incoming flow of atomic oxygen. During prolonged stay in orbit (10-20 years), the atomic oxygen fluence reaches 10 cm or more, which leads to the destruction of the polymer surface to a depth of hundreds of micrometers. 3 types of promising coatings based on organosilicon polymers have been studied: the ECT-PC composition, ECT varnish, UV-7-21 sealant, intended for use on low earth orbit spacecraft. To assess their resistance to atomic oxygen when simulating an incoming flow with high fluence up to 10 cm in laboratory conditions, the technique of accelerated tests in an oxygen plasma stream at oxygen particle energies of 10-40 eV was applied. The dependences of mass loss on equivalent fluence were investigated and the erosion coefficients of coatings were measured: for the ECT-PC composition - 4.2 × 10 g/atom O, for ECT varnish - 3.2 × 10 g/atom O, for UV-7-21 sealant - 1.7 × 10 g/atom O. In comparison with polymers used on the spacecraft (for example, polyimide with 4.3 × 10 g/atom O) the measured erosion coefficients are two orders of magnitude lower, which characterizes the high resistance of the tested materials to atomic oxygen. Based on the obtained dependences of mass loss on fluence, the predicted maximum fluence of atomic oxygen is (7-25) × 10 cm, depending on the type and thickness of the coating.
Keywords
материалы космических аппаратов атомарный кислород низкие околоземные орбиты полимерные покрытия ионосфера источники атомарного кислорода плазменные ускорители
Date of publication
20.08.2024
Year of publication
2024
Number of purchasers
0
Views
45

References

  1. 1. Акишин А.И., Новиков Л.С., Черник В.Н. Воздействие космической среды на материалы и оборудование космических аппаратов. // Новые наукоемкие технологии в технике. Энциклопедия. Т. 17. / Ред. Новиков Л.С., Панасюк М.И. М.: ЗАО НИИ “ЭНЦИТЕХ”, 2000. С. 100.
  2. 2. Гужова С.К., Новиков Л.С., Черник В.Н., Скурат В.Е. Воздействие космической среды на материалы и оборудование космических аппаратов. // Модель космоса. Т. 2. / Ред. Новикова Л.С. М.: Книжный дом “Университет”, 2007. С. 171.
  3. 3. Minton T.K., Garton D.J. Dynamics of Atomic Oxygen Induced Polymer Degradation in Low Earth Orbit. // Chemical Dynamics in Extreme Environments. Advanced Series in Physical Chemistry. V. 11. / Ed. Dressier R.A. World Scientific Publishing, 2001. P. 420.
  4. 4. Gordo P., Frederico T., Melício R., Duzellier S., Amorim A. // Adv. Space Res. 2020. V. 66. P. 307.
  5. 5. Tagawa M., Minton T.K. // MRS Bull. 2010. V. 35. P. 35.
  6. 6. Акишин А.И., Новиков Л.С. Физические процессы на поверхности искусственных спутников Земли. М.: Изд-во МГУ, 1987. 89 с.
  7. 7. Акишин А.И., Гужова С К. // Физика и химия обработки материалов. 1993. № 3. С. 40.
  8. 8. Duo S.W., Li M.S., Zhou Y.C. // J. Mater. Sci. Technol. 2003. V. 19. Iss. 6. P. 535.
  9. 9. Тупиков В.И., Клиншпонт Э.Р., Милинчук В. К. // Химия высоких энергий. 1996. Т. 30. С. 49.
  10. 10. Гулино Д.А. // Аэрокосмическая техника. 1989. № 5. С. 119.
  11. 11. Chen J., Ding N., Li Z., Wang W. // Prog. Aerosp. Sci. 2016. V. 83. P. 37. https://www.doi.org/10.10.16/j.paerosci.2016.02.002
  12. 12. Zhao W., Li W., Liu H., Zhu L. // Chinese Journal of Aeronautics. 2010. V. 23. P. 268. https://www.doi.org/10.1016/s1000-9361 (09)60215-6
  13. 13. Imamura S., Sasaki M., Yamamoto Y. // Jpn. J. Soc. Aeronaut. Space Sci. 2021. V. 69. P. 35. https://www.doi.org/10.2322/jjsass.69.35
  14. 14. Yugo Kimoto, Kazuki Yukumatsu, Aki Goto // Acta Astronautica. 2021. V. 179. P. 695. https://www.doi.org/10.1016/j.actaastro.2020.11.048
  15. 15. Shalin R.E., Minakov V.T., Deev I.S., Nikishin E.F. // Proc. 7th Int. Symposium On Materials in Space Environment. Toulouse, France. 1997. P. 375.
  16. 16. De Groh K.K., Banks B.A., McCarthy C. // Proc. 10th Int. Symposium on Materials in a Space Environment and 8th Int. Conf. of Protection of Materials and Structures in a Space Environment. Colliuore, France. 2006. P. 215.
  17. 17. Kleiman J., Iskanderova Z., Gudimenko Y. // Proc. 9th Symposium on Materials in Space Environment. Noordwijk, Netherlands. 2003. P. 313.
  18. 18. Новиков Л.С., Черник В.Н. Применение плазменных ускорителей в космическом материаловедении. М.: Университетская книга, 2008. 89 с.
  19. 19. А.с. № 1797448 (СССР). Газоpазpядный источник плазмы дуоплазмотpонного типа. / МГУ им. М.В. Ломоносова. Черник В.Н. // Б.И. 1995. № 19. С. 3.
  20. 20. Chernik V.N. // Proc. 7th Int. Symposium Materials in Space Environment, Toulouse, France. 1997. P. 237.
  21. 21. ASTM. Standard Practics for Ground Laboratory Atomic Oxygen Interaction Evaluation of Material for Space Applications. Designation E 2089-00. 2006.
  22. 22. Li Y., Qian Y., Qi H., Li J., Sun J. // Adv. Mater. 2018. V. 30. P. 1803854.
  23. 23. Eduok U., Faye O., Szpunar J. // Prog. Org. Coat. 2017. V. 111. P. 124. https://www.doi.org/10.1016/j.porgcoat.2017.05.012
  24. 24. Черник В.Н. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2014. Т. 18. № 3. С. 44.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library