RAS PhysicsПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

The Impact of Thermal Treatment on the Properties of Polymer-Contained Composite Films of CsPbBrI

PII
S30345731S1028096025020025-1
DOI
10.7868/S3034573125020025
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
12-15
Abstract
In the current work, the impact of vacuuming and annealing temperatures on the properties of composite films based on CsPbBrI perovskites with partial substitution of Pb ions for Mn and passivation of grain boundaries with polyethylene oxide and polyvinylidene fluoride were used. Dimethyl sulfoxide was used as a solvent. The spin-coating method was used to form films. The vacuuming and annealing temperatures varied in the ranges of 60-80°C and 60-90°C respectively. The spectral dependences of photoluminescence were compared in the investigation. Based on it, the conclusions about the influence of phase segregation and the applicability of the temperature regime were made. It was found that samples obtained using vacuuming and annealing temperatures of 70 °C exhibited photoluminescence peaks of 616 ± 14 nm and 638 ± 18 nm. The presence of two peaks indicates minor phase segregation, which manifests itself in a local change in the stoichiometric composition of the samples with the formation of regions enriched with bromine and iodine. However, among the sample under study, taking into account the limitation of photoinduced phase segregation, the specified thermal regime is optimal: a decrease in temperature leads to a shift of the photoluminescence peak to the green region of the spectrum, while its increase leads to the formation of defective non-luminescent phases.
Keywords
свинцово-галогенидные перовскиты фазовая сегрегация вакуумирование термический отжиг зародышеобразование кристаллизация композитные материалы светоизлучающие материалы
Date of publication
22.07.2024
Year of publication
2024
Number of purchasers
0
Views
41

References

  1. 1. Yao Z., Zhao W., Chen S., Jin Z., Liu, S. F. // ACS Appl. Energy Mater. 2020. V. 3. № 6. P. 5190. https://www.doi.org/10.1021/acsaem.9b02468
  2. 2. Wang Q., Gong Z., Wu S., Pan S., Pan J. // J. Crystal Growth. 2022. № 596. P. 126838. https://www.doi.org/org/10.1016/j.jcrysgro.2022.126838
  3. 3. Zhang X., Yang P. // Langmuir. 2023. V. 39. № 32. P. 11188. https://www.doi.org/10.1021/acs.langmuir.3c01848
  4. 4. Moon J., Mehta Y., Gundogdu K., So F., Gu Q. // Adv. Mater. 2023. P. 2211284. https://www.doi.org/10.1002/adma.202211284
  5. 5. Baeva M., Gets D., Polushkin A., Vorobyov A., Goltaev A., Neplokh V., Mozharov A., Krasnikov D.V., Nasibulin A.G., Mukhin I., Makarov S. // OptoElectronic Adv. 2023. V. 6. P. 220154. https://www.doi.org/10.29026/oea.2023.220154
  6. 6. Hänsch P., Loi M.A. // Appl. Phys. Lett. 2023. V. 123. P. 030501. https://www.doi.org/10.1063/5.0151942
  7. 7. Li H., Lin H., Ouyang D., Yao C., Li C., Sun J., Song Y., Wang Y., Yan Y., Wang Y., Dong Q., Choy W.C.H. // Adv. Mater. 2021. V. 33. P. 2008820. https://www.doi.org/10.1002/adma.202008820
  8. 8. Shen X., Zhang X., Wang Z., Gao X., Wang Y., Lu P., Bai X., Hu J., Shi Z., Yu W.W., Zhang Y. // Adv. Functional Mater. 2022. V. 32. P. 2110048. https://www.doi.org/10.1002/adfm.202110048
  9. 9. Yang J.N., Song Y., Yao J.S., Wang K.H., Wang J.J., Zhu B.S., Yao M.M., Rahman S.U., Lan Y.F., Fan F.J., Yao H. // J. Am. Chem. Soc. 2020. V. 142. № 6. P. 2956. https://www.doi.org/10.1021/jacs.9b11719
  10. 10. Aygüler M.F., Puscher B.M.D., Tong Y., Bein T., Urban A.S., Costa R.D., Docampo P. // J. Phys. D: Appl. Phys. 2018. V. 51. № 33. P. 1. https://www.doi.org/10.1088/1361-6463/aad203
  11. 11. Wang C.M., Su Y.M., Shih T.A., Chen G.Y., Chen Y.Z., Lu C.W., Yu I.S., Yang Z.P., Su H.C. // J. Mater. Chem. C. 2018. V. 6. № 47. P. 12808. https://www.doi.org/10.1039/c8tc04451a
  12. 12. Stockman A., Macleod D.I.A., Johnson N.E. // J. Opt. Soc. Am. A. 1993. V. 10. № 12. P. 2491. https://www.doi.org/10.1364/josaa.10.002491
  13. 13. Li J., Yang L., Guo Q., Du P., Wang L., Zhao X., Liu N., Yang X., Luo J., Tang J. // Sci. Bull. 2022. V. 67. № 2. P. 178. https://www.doi.org/10.1016/j.scib.2021.09.003
  14. 14. Liang J., Liu Z., Qiu L., Hawash Z., Meng L., Wu Z., Jiang Y., Ono L.K., Qi Y. // Adv. Energy Mater. 2018. V. 8. P. 1800504. https://www.doi.org/10.1002/aenm.201800504
  15. 15. Zheng L., Hurst T., Li Z. // Georgia J. Sci. 2022. V. 80. № 2. P. 1.
  16. 16. Gets D., Alahbakhshi M., Mishra A., Haroldson R., Papadimitratos A., Ishteev A., Saranin D., Anoshkin S., Pushkarev A., Danilovskiy E., Makarov S., Slinker J.D., Zakhidov A.A. // Adv. Opt. Mater. 2021. V. 9. P. 2001715. https://www.doi.org/10.1002/adom.202001715
  17. 17. Mondal S., Paul T., Maiti S., Das B.K., Chattopadhyay K.K. // Nano Energy. 2020. V. 74. P. 104870. https://www.doi.org/10.1016/j.nanoen.2020.104870
  18. 18. Liu C., Cheng Y.B., Ge Z. // Chem. Soc. Rev. 2020. V. 49. № 6. P. 1653. https://www.doi.org/10.1039/c9cs00711c
  19. 19. Zhang X., Gao X., Meng X. // J. Alloys Compd. 2019. V. 810. P. 151943. https://www.doi.org/10.1016/j.jallcom.2019.151943
  20. 20. Gualdrón-Reyes A.F., Yoon S.J., Barea E.M., Agouram S., Muñoz-Sanjosé V., Meléndez Á.M., Niño-Gómez M.E., Mora-Seró I. // ACS Energy Lett. 2019. V. 4. № 1. P. 54. https://www.doi.org/10.1021/acsenergylett.8b02207
  21. 21. OceanView (v. 1.6.7) (2020) Ocean Optics, США. https://www.oceanoptics.com/software/. Дата посещения 16.08.2024.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library