RAS PhysicsПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

Wave Functions of Positrons Channeling in [111] Direction of a Silicon Crystal

PII
S1028096025010173-1
DOI
10.31857/S1028096025010173
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
125-134
Abstract
For a positively charged particle, the repulsive uniform potentials of the three neighboring [111] chains of the silicon crystal form a small potential well with the symmetry of an equilateral triangle is described by the C3v group. The motion of a quantum particle in such a well is of interest in terms of manifestations of quantum chaos. A previously developed procedure for numerically finding the energy levels and wave functions of stationary states, taking into account the symmetry of this problem, is used to study the transverse motion of the channeling positrons with energies of 5, 6 and 20 GeV. A classification of stationary states of transverse motion of a positron is given based on the theory of group representations. The wave functions of the stationary states in an axially symmetric potential well are also found, and it is shown how these functions are modified under the influence of a perturbation with the symmetry of an equilateral triangle. In the upper part of the triangular potential well, the classical motion is chaotic for the majority of initial conditions. The structure of the wave functions in this domain has the features predicted by the quantum chaos theory.
Keywords
каналирование кремний численное моделирование спектральный метод гексагональная сетка треугольная симметрия квантовый хаос
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Ахиезер А.И., Шульга Н.Ф. Электродинамика высоких энергий в веществе. М.: Наука, 1993. 344 с.
  2. 2. Ахиезер А.И., Шульга Н.Ф., Трутень В.И., Гриненко А.А., Сыщенко В.В. // УФН. 1995. Т. 165. № 10. С. 1165. https://doi.org/10.3367/UFNr.0165.199510c.1165
  3. 3. Gemmel D.S. // Rev. Mod. Phys. 1974. V. 46. P. 129. https://doi.org/10.1103/RevModPhys.46.129
  4. 4. Uggerhøj U.I. // Rev. Mod. Phys. 2005. V. 77. P. 1131. https://doi.org/10.1103/RevModPhys.77.1131
  5. 5. Lindhard J. // Kongel. Dan. Vidensk. Selsk., Mat.-Fys. Medd. 1965. V. 34 (14). P. 1.
  6. 6. Шульга Н.Ф., Сыщенко В.В., Тарновский А.И., Исупов А.Ю. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2015. № 7. С. 72. https://doi.org/10.7868/S0207352815070197
  7. 7. Shul’ga N.F., Syshchenko V.V., Tarnovsky A.I., Isupov A.Yu. // Nucl. Instrum. Methods Phys. Res. B. 2016. V. 370. P. 1. https://doi.org/10.1016/j.nimb.2015.12.040
  8. 8. Shul’ga N.F., Syshchenko V.V., Tarnovsky A.I., Isupov A.Yu. // J. Phys.: Conf. Ser. 2016. V. 732. P. 012028. https://doi.org/10.1088/1742-6596/732/1/012028
  9. 9. Шульга Н.Ф., Сыщенко В.В., Тарновский А.И., Исупов А.Ю. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2016. № 4. С. 103. https://doi.org/10.7868/S0207352816040168
  10. 10. Сыщенко В.В., Тарновский А.И. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 7. С. 84. https://doi.org/10.31857/S1028096021070207
  11. 11. Сыщенко В.В., Тарновский А.И., Исупов А.Ю., Соловьев И.И. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 3. С. 103. https://doi.org/10.31857/S1028096020030188
  12. 12. Shul’ga N.F., Syshchenko V.V., Tarnovsky A.I., Dronik V.I., Isupov A.Yu. // J. Instrum. 2019. V. 14. P. C12022. https://doi.org/10.1088/1748-0221/14/12/C12022
  13. 13. Сыщенко В.В., Тарновский А.И., Дроник В.И, Исупов А.Ю. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 3. С. 79. https://doi.org/10.31857/S1028096022030207
  14. 14. Сыщенко В.В., Тарновский А.И., Дроник В.И, Исупов А.Ю. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 6. С. 88. https://doi.org/10.31857/S1028096023060158
  15. 15. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 3. Квантовая механика. Нерелятивистская теория. М.: Физматлит, 2016. 800 с.
  16. 16. Gutzwiller M.C. Chaos in Classical and Quantum Mechanics. Springer, 1990. https://doi.org/10.1007/978-1-4612-0983-6
  17. 17. Штокман Х.-Ю. Квантовый хаос. М.: Физматлит, 2004. 376 с.
  18. 18. Райхл Л.Е. Переход к хаосу в консервативных классических и квантовых системах. М.–Ижевск: РХД, 2008. 756 с.
  19. 19. Bolotin Y., Tur A., Yanovsky V. Chaos: Concepts, Control and Constructive Use. Springer International Publishing Switzerland, 2017. 281 p. https://doi.org/10.1007/978-3-319-42496-5
  20. 20. Hénon M., Heiles C. // Astronom. J. 1964. V. 69. P. 73. https://doi.org/10.1086/109234
  21. 21. Davis M.J., Heller E.J. // J. Chem. Phys. 1981. V. 75. P. 246. https://doi.org/10.1063/1.441832
  22. 22. Syshchenko V.V., Tarnovsky A.I., Parakhin A.S., Isupov A.Yu. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2024. V. 18. № 2. P. 274. https://doi.org/ 10.1134/S1027451024020186
  23. 23. Feit M.D., Fleck J.A., Jr., Steiger A. // J. Comput. Phys. 1982. V. 47. P. 412. https://doi.org/10.1016/0021-9991 (82)90091-2
  24. 24. Шульга Н.Ф., Сыщенко В.В., Нерябова В.С. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2013. № 3. С. 91. https://doi.org/10.1134/S1027451013020183
  25. 25. Shul’ga N.F., Syshchenko V.V., Neryabova V.S. // Nucl. Instrum. Methods Phys. Res. B. 2013. V. 309. P. 153. https://doi.org/10.1016/j.nimb.2013.01.022
  26. 26. Галицкий В.М., Карнаков Б.М., Коган В.И. Задачи по квантовой механике. М.: Наука, 1981. 648 с.
  27. 27. Шапиро Д.А. Представления групп и их применения в физике. Новосибирск: НГУ, 2005. 142 с.
  28. 28. Исупов А.Ю., Сыщенко В.В., Парахин А.С. // Прикладная математика & физика. 2023. Т. 55. № 1. С. 49. https://doi.org/ 10.52575/2687-0959-2023-55-1-49-56
  29. 29. Исупов А.Ю., Сыщенко В.В., Тарновский А.И., Парахин А.С. // Прикладная математика & физика. 2024. Т. 56, № 4. С. 320. https://doi.org/10.52575/2687-0959-2024-56-4-320-327
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library