RAS PhysicsПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

Influence of the Morphology of the Interface Between the Coating and the Substrate on the Distribution of Thermoelastic Stresses in High-Speed Steels

PII
S1028096025010164-1
DOI
10.31857/S1028096025010164
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
117-124
Abstract
Finite element methods have solved the problem of the influence of the morphology of the interface between coating made of high-speed steel P2M9 and substrate made of structural steel 30HGSA on the distribution of thermoelastic stresses in the coating. It was solved in two stages. At the first stage, the behavior of stresses during cooling from a temperature of 1573 K to a temperature of 293 K. was studied. At the second stage, after cooling, a static tensile load was applied to the coating surface. The morphology of the interface was determined using scanning electron microscopy data. It follows from them that the interface has a curved appearance and, in the first approximation, can be described by a harmonic function. It is shown that at the cooling stage, the undulating interface between the coating and the substrate serves as the most effective barrier to crack formation, redistributing the areas of dangerous tensile forces into the substrate. The application of a tensile static load to the coating after cooling has shown that in the case of a rectilinear interface, when the value of the elastic modulus of the substrate (Ec) is an order of magnitude less than the elastic modulus of the coating (Es), the coating separation from the substrate is observed. The plastic flow occurs mainly in the coating. The same situation is observed for a curved boundary with the only difference that it prevents separation. If Es = 10Ec, then for a rectilinear boundary, plastic flow is observed both in the substrate and in the coating, and for a curved boundary, this process occurs mainly in the substrate.
Keywords
покрытие из быстрорежущей стали плазменная наплавка граница раздела термоупругие напряжения метод конечных элементов
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Мозговой И.В., Шнейдер Е.А. Наплавка быстрорежущей стали. Омск: Изд-во ОмГТУ, 2016. 200 с.
  2. 2. Соснин Н.А., Ермаков С.А., Тополянский П.А. Плазменные технологии. Сварка, нанесение покрытий, упрочнение. М.: Машиностроение, 2008. 406 с.
  3. 3. Maruschak P.O., Panin S.V., Ignatovich S.R., Zakiev I.M., Konovalenko I.V., Lytvynenko I.V. Sergeev V.P. // Theor. Appl. Fracture Mech. 2019. V. 57. P. 43. https://doi.org/10.1016/j.tafmec.2011.12.007
  4. 4. Wang Y., Mao B., Chu Sh., Chen S., Xing H., Zhao H., Wang Sh., Wang Y., Zhang J., Sun B. // J. Mater. Res. Technol. 2023. V. 24. P. 8198. https://www.doi.org/10.1016/j.jmrt.2023.04.269
  5. 5. Корнеев В.А. // Горный информационно-аналитический бюллетень. 2023. № 11. Вып. 1. C. 116. https://www.doi.org/10.25018/0236_1493_2023_111_0_116
  6. 6. Малушин Н.Н., Романов Д.А., Ковалев А.П., Осетковский В.Л., Бащенко Л.П. // Известия вузов. Физика. 2019. Т. 62. № 10 (742). С. 106.
  7. 7. Малушин Н.Н., Романов Д.А., Ковалев А.П., Будовских Е.А., Chen X. // Известия вузов. Черная металлургия. 2020. Т. 63. № 9. С. 707.
  8. 8. Lu J., Song Zh., Qin H., Huang H., Sui X., Weng Y., Mo Zh., Wang K., Ren X. // Vacuum. 2023. V. 218. P. 112634.
  9. 9. Shulov V.A., Gromov A.N., Teryaev D.A., Engel’ko V.I. // Russ. J. Non-Ferrous Metals. 2016. V. 57. P. 256.
  10. 10. Yang Y., Yang Y., Liao Ch., Yang G., Qin Y., Li Q., Wu M. // Tribology Int. 2021. V. 161. P. 107086. https://doi.org/10.1016/j.triboint.2021.107086
  11. 11. Алифанов А.В., Попова Ж.А. // Литье и металлургия. 2012. № 4 (68). C. 151.
  12. 12. Алифанов А.В., Ционенко Д.А., Милюкова А.М., Ционенко Н.М. // Proc. National Academy of Sciences of Belarus, Рhysical-Technical Series. 2016. № 4. P. 31.
  13. 13. Люкшин П.А., Люкшин Б.А., Матолыгина Н.Ю., Панин С.В. // Физическая мезомеханика. 2020. Т. 23. № 5. C. 69.
  14. 14. Панин С.В., Коваль А.В., Трусова Г.В., Почивалов Ю.И., Сизова О.В. // Физическая мезомеханика. 2000. Т. 3. № 2. С. 99.
  15. 15. Балохонов Р.Р., Романова В.А. // Деформация и разрушение материалов. 2007. № 5. C. 12.
  16. 16. Балохонов Р.Р., Романова В.А. // Физическая мезомеханика. 2014. Т. 17. № 1. C. 75.
  17. 17. Ganilova O.A., Cartmell M.P., Kiley A. // Composite Structures. 2022. V. 288. P. 115423.
  18. 18. Cappello R., Pitarresi G., Catalanotti G. // Composites Sci. Technol. 2023. V. 241. P. 110103.
  19. 19. Li Zh., Huang D., Xu Y., Yan K. // Appl. Math. Modelling. 2021. V. 93. P. 294.
  20. 20. Nevskii S., Sarychev V., Konovalov S., Granovskii A., Gromov V. // J. Mater. Res. Technol. 2020. № 9 (1). P. 539.
  21. 21. Sun Y., Gou J., Wang Ch., Zhou Q., Liu R., Chen P., Yang T., Zhao X. // Defence Technology. 2024. V. 32. P. 521.
  22. 22. Brener E.A., Weikamp M., Spatschek R., Bar-Sinai Y., Bouchbinder E. // J. Mech. Phys. Solids. 2016. V. 89. P. 149.
  23. 23. Невский С.А., Бащенко Л.П., Громов В.Е., Филяков А.Д. // Деформация и разрушение материалов. 2024. № 6. C. 2.
  24. 24. Таблицы физических величин. Справочник. / Ред. Кикоин И.К. М.: Атомиздат, 1976. 1006 с.
  25. 25. Марочник сталей и сплавов. / Ред. Зубченко А.С. М.: Машиностроение, 2003. 782 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library