ОФНПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

Эластичный матричный электрод на основе слоев одностенных углеродных нанотрубок для применения в гибкой оптоэлектронике

Код статьи
S1028096025010135-1
DOI
10.31857/S1028096025010135
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 1
Страницы
94-100
Аннотация
Рассмотрена технология изготовления растяжимого электрода на основе полидиметилсилоксана (ПДМС) и одностенных углеродных нанотрубок. Электроды были созданы методом оптической литографии на нанотрубках с использованием жертвенного слоя. Рисунок формировали сухим плазменным травлением. Для создания растяжимого устройства массив нитевидных микрокристаллов InGaN/GaN был инкапсулирован в ПДМС методом гравитационной накрутки и отделен от ростовой подложки. Проведено тестирование устройства на растяжение и измерены вольтамперные характеристики, а также исследована стабильность работы устройства при циклических нагрузках.
Ключевые слова
оптоэлектроника нитрид галлия полупроводниковые нитевидные микрокристаллы гибкая электроника одностенные углеродные нанотрубки эластичные электроды
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
7

Библиография

  1. 1. Xie Y. Shihong Q. Principle and Application of Inorganic Electroluminescence and Organic Electroluminescence // International Conference on Electric Information and Control Engineering. 2011. https://doi.org/10.1109/ICEICE.2011.5777215
  2. 2. Kim Y., Hwang S., Hong J., Lee S. // Appl. Phys. Lett. 2006. V. 89. № 17. P. 173506. https://doi.org/10.1063/1.2364866
  3. 3. Sugimoto A., Ochi H., Fujimura S., Yoshida A., Miyadera T., Tsuchida M. // J. Selected Topics Quantum Electronics. 2004. V. 10. № 1. P. 107. https://doi.org/10.1109/JSTQE.2004.824112
  4. 4. Shen J., Chui C., Tao X. // Biomed. Opt. Express. 2013. V. 4. № 12. P. 2925. https://doi.org/10.1364/BOE.4.002925
  5. 5. Yokota T., Zalar P., Kaltenbrunner M., Jinno H., Matsuhisa N., Kitanosako H., Tachibana Y., Yukita W., Koizumi M., Someya T. // Sci. Adv. 2016. V. 2. № 4. P. e1501856. https://doi.org/10.1126/sciadv.1501856
  6. 6. Самарин А. // Новые технологии. 2007. № 69. С. 221.
  7. 7. Kgatuke M., Hardy D., Тownsend K., Salter E., Downes T., Harrigan K., Allcock S., Dias Т. // Proceedings. 2019. V. 32. № 1. P. 12. https://doi.org/10.3390/proceedings2019032012
  8. 8. Yan X., Fan S., Zhang X., Ren Х. // Nanoscale Res. Lett. 2015. V. 10. P. 1. https://doi.org/10.1186/s11671-015-1097-7
  9. 9. Feng G., Nix W., Yoon Y., Lee C. // J. Appl. Phys. 2006. V. 99. № 7. P. 074304. https://doi.org/10.1063/1.2189020
  10. 10. Neplokh V., Kochetkov F., Deryabin K., Fedorov V., Bolshakov A., Eliseev I., Mikhailovskii V., Ilatovskii D., Krasnikov D., Tchernycheva M., Cirlin G., Nasibulin A., Mukhin I., Islamova R. // J. Mater. Chem. C. 2020. V. 8. № 11. P. 3764. https://doi.org/10.1039/C9TC06239D
  11. 11. Kochetkov F., Neplokh V., Mastalieva V., Mukhangali S., Vorobyov A., Uvarov A., Komissarenko F., Mitin D., Kapoor A., Eymery J., Amador-Mendez N., Durand C., Krasnikov D., Nasibulin A., Mukhin I., Islamova R. // Nanomaterials. 2021. V. 11. № 6. P. 1503. https://doi.org/10.3390/nano11061503
  12. 12. Mukhangali S. Neplokh V., Kochetkov F., Moiseev E., Miroshnichenko A., Deryabin K., Nasibulin A., Mukhin I., Islamova R. // J. Phys.: Conf. Ser. 2021. V. 2103. № 1. P. 012178. https://doi.org/10.1088/1742–6596/2103/1/012178
  13. 13. Kochetkov F., Neplokh V., Fedorov V., Bolshakov A., Cirlin G., Mukhin I., Islamova R. // J. Phys.: Conf. Ser. 2020. V. 1965. № 1. P. 012010. https://doi.org/10.1088/1742-6596/1695/1/012010
  14. 14. Mukhangali S., Neplokh V., Kochetkov F., Fedorov V., Nasibulin A., Makarov S., Mukhin I., Islamova R. // J. Phys.: Conf. Ser. 2021. V. 2086. № 1. P. 012093. https://doi.org/10.1088/1742-6596/2086/1/012093
  15. 15. Kaskela A., Nasibulin A.G., Timmermans M.Y., Aitchison B., Papadimitratos A., Tian Y., Zhu Z., Jiang H., Brown D.P., Zakhidov A., Kauppinen E.I. // Nano Lett. 2010. V. 10. № 11. P. 4349. https://doi.org/10.1021/nl101680s
  16. 16. Mukhangali S., Neplokh V., Kochetkov F., Vorobyov A., Mitin D., Mukhin I., Krasnikov D., Tian Y., Islamova R., Nasibulin A.G., Mukhin I. // Appl. Phys. Lett. 2022. V. 121. № 24. https://doi.org/10.1063/5.0125974
  17. 17. Köster R. Hwang J.S., Durand C., Dang D., Eymery J. // Nanotechnology. 2009. V. 21. № 1. P. 015602. https://doi.org/10.1088/0957-4484/21/1/015602
  18. 18. Eymery J., Chen X., Durand C., Kolb M., Richter G. // Comptes Rendus Phys. 2013. V. 14. № 2–3. P. 221. https://doi.org/10.1016/j.crhy.2012.10.009
  19. 19. Guan N., Dai X., Babichev A., Julien F., Tchernycheva M. // Chem. Sci. 2017. V. 8. № 12. P. 7904. https://doi.org/10.1039/C7SC02573D
  20. 20. Tsapenko A.P., Goldt A.E., Shulga E., Popov Z.I., Maslakov K.I., Anisimov A.S., Sorokin P.B., Nasibulin A.G. // Carbon. 2018. № 130. P. 448. https://doi.org/10.1016/j.carbon.2018.01.016
  21. 21. Gilshteyn E.P., Romanov S.A., Kopylova D.S., Savostyanov G. V., Anisimov A.S., Glukhova O.E., Nasibulin A.G. // ACS Appl. Mater. Interfaces. 2019. V. 11. № 30. P. 27327. https://doi.org/10.1021/acsami.9b07578
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека