ОФНПоверхность. Рентгеновские, синхротронные и нейтронные исследования Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques

  • ISSN (Print) 1028-0960
  • ISSN (Online) 3034-5731

Влияние поверхности на развитие и динамику коалесценции капель в оптических ячейках при фазовом переходе изотропная жидкость–жидкий кристалл

Код статьи
S1028096025010027-1
DOI
10.31857/S1028096025010027
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 1
Страницы
10-16
Аннотация
В работе представлены результаты исследований слияния капель нематического жидкого кристалла в окружении изотропной жидкости. С помощью оптической микроскопии высокого разрешения и высокоскоростной видеорегистрации изучено слияние капель в тонких оптических ячейках. Использованы ячейки с планарными и с гомеотропными граничными условиями для единичного вектора преимущественной ориентации (директора) жидкого кристалла. Показано, что в зависимости от граничных условий на поверхности ячейки процесс слияния на начальном этапе развивается по-разному. В ячейке с планарными граничными условиями на начальном этапе наблюдали линейную зависимость ширины перешейка между каплями от времени. На последующих этапах влияние поверхностей приводит к более медленной динамике. Заключительный этап слияния характеризуется экспоненциальной релаксацией капли к равновесной форме. При слиянии капель, диаметр которых превышает толщину ячейки, наблюдали промежуточный этап со степенной зависимостью ширины перешейка от времени. Длительность этого этапа увеличивается с увеличением размера капель. Определены капиллярная скорость и характерные времена на различных этапах слияния капель. Характерные времена для начального этапа увеличиваются линейно с увеличением размера капель. Для среднего этапа характерные времена увеличиваются пропорционально кубу радиуса капель.
Ключевые слова
коалесценция поверхностная энергия вязкость течение Пуазейля
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
11

Библиография

  1. 1. Frenkel J. // J. Phys. (Moscow). 1945. V. 9. P. 385.
  2. 2. Hopper R.W. // J. Am. Ceram. Soc. 1984. V. 67. P. 262. https://www.doi.org/10.1111/j.1151-2916.1984.tb19692.x
  3. 3. Menchaca-Rocha A., Martinez-Davalos A., Nunez R., Popinet S., Zaleski S. // Phys. Rev. E. 2021. V. 63. P. 046309. https://www.doi.org/10.1103/PhysRevE.63.046309
  4. 4. Wu M., Cubaud T., Ho C.H. // Phys. Fluids. 2004. V. 16. P. L51. https://www.doi.org/10.1063/1.1756928
  5. 5. Aarts D.G.A.L., Lekkerkerker H.N.W., Guo G.H., Wegdam D.B. // Phys. Rev. Lett. 2005. V. 95. P. 164503. https://www.doi.org/10.1103/PhysRevLett.95.164503
  6. 6. Yao W., Maris H.J., Pennington P., Seidel G.M. // Phys. Rev. E. 2005. V. 71. P. 016309. https://www.doi.org/10.1103/PhysRevE.71.016309
  7. 7. Case S.C., Nagel R.S. // Phys. Rev. Lett. 2008. V. 100. P. 084503. https://www.doi.org/10.1103/PhysRevLett.100.084503
  8. 8. Paulsen J.D., Burton J.C., Nagel S.R. // Phys. Rev. Lett. 2011. V. 106. P. 114501. https://www.doi.org/10.1103/PhysRevLett.106.114501
  9. 9. Paulsen J.D., Carmigniani R., Kannan A., Burton J.C., Nagel S.R. // Nat. Commun. 2014. V. 5. P. 3182. https://www.doi.org/10.1038/ncomms4182
  10. 10. Rahman M., Lee W., Iyer A., Williams S.J. // Phys. Fluids. 2019. V. 31. P. 012104. https://www.doi.org/10.1063/1.5064706
  11. 11. Shuravin N.S., Dolganov P.V., Dolganov V.K. // Phys. Rev. E. 2019. V. 99. P. 062702. рttps://www.doi.org/10.1103/PhysRevE.99.062702
  12. 12. Nguyen Z.H., Harth K., Goldfain A.M., Park C.S., Maclennan J.E., Glaser M.A., Clark N.A. // Phys. Rev. Res. 2021. V. 3. P. 033143. https://www.doi.org/10.1103/PhysRevResearch. 3.033143
  13. 13. Klopp C., Eremin A. // Langmuir. 2020. V. 36. P. 10615. https://www.doi.org/10.1021/acs.langmuir.0c02139
  14. 14. Delabre U., Cazabat A.M. // Phys. Rev. Lett. 2010. V. 104. P. 227801. https://www.doi.org/10.1103/PhysRevLett.104.227801
  15. 15. Hack A.M., Tewes W., Xie Q., Datt C., Harth K., Harting J., Snoeijer J.H. // Phys. Rev. Lett. 2020. V. 124. P. 194502. https://www.doi.org/10.1103/PhysRevLett.124.194502
  16. 16. Ryu S., Zhang H., Anuta U.J. // Micromachines. 2023. V. 14. P. 2046. https://www.doi.org/10.3390/mi14112046
  17. 17. Beaty E., Lister J.R. // J. Fluid Mech. 2024. V. 984. P. A77. https://www.doi.org/10.1017/jfm.2024.295
  18. 18. Eggers J., Sprittles J.E., Snoeijer J.H. // Annual Review of Fluid Mechanics. 2024. V. 57. https://www.doi.org/10.1146/annurev-fluid-121021044919
  19. 19. Yokota M., Okumura K. // PNAS 2011. V. 108. P. 6395. https://www.doi.org/10.1073/pnas1017112108
  20. 20. Oswald P., Poy G. // Phys. Rev. E. 2015. V. 92. P. 062512. https://www.doi.org/10.1103/PhysRevE.92.062512
  21. 21. Dolganov P.V., Zverev A.S., Baklanova K.D., Dolganov V.K. // Phys. Rev. E. 2021. V. 104. P. 014702. https://www.doi.org/10.1103/PhysRevE.104.014702
  22. 22. Долганов П.В., Зверев А.С., Спириденко Н.А., Бакланова К.Д., Долганов В.К. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 8. C. 30.
  23. 23. Dolganov P.V., Spiridenko N.A., Zverev A.S. // Phys. Rev. E. 2024. V. 109. P. 014702. https://www.doi.org/ 10.1103/PhysRevE.109.014702
  24. 24. Долганов П.В., Спириденко Н.А., Долганов В.К., Кац Е.И., Бакланова К.Д. // Письма в ЖЭТФ. 2023. Т. 118. С. 118. https://www.doi.org/10.31857/S1234567823140094
  25. 25. Де Жен П.-Ж. Физика жидких кристаллов, пер. с англ. М.: Мир, 1977. 400 с.
  26. 26. Faetti S., Palleschi V. // J. Chem. Phys. 1984. V. 81. P. 6254. https://www.doi.org/10.1063/1.447582
  27. 27. Kim Y.K., Shiyanovskii S.V., Lavrentovich O.D. // J. Phys. Condens. Matter. 2013. V. 25. P. 404202. https://www.doi.org/10.1088/0953-8984/25/40/ 404202
  28. 28. Haputhanthrige N.P., Paladugu S., Lavrentovich M.O., Lavrentovich O.D. // Phys. Rev. E. 2024. V. 109. P. 064703. https://www.doi.org/10.1103/PhysRevE.109.064703
  29. 29. Eggers J. // Rev. Mod. Phys. 1997. V. 69. P. 865. https://www.doi.org/10.1103/RevModPhys.69.865
  30. 30. McKinley G.H., Tripati A. // J. Rheology. 2000. V. 44. P. 653. https://www.doi.org/10.1122/1.551105
  31. 31. Eggers J., Villermaux E. // Rep. Prog. Phys. 2008. V. 71. P. 036601. https://www.doi.org/10.1088/0034-4885/71/3/036601
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека