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Исследовано влияние ультрамелкозернистой структуры вольфрама и конусообразной морфологии 
поверхности образца на образование блистеров при облучении ионами He+ с энергией 30 кэВ. 
В  сравнительных экспериментах использовали ультрамелкозернистые и  мелкозернистые 
образцы со средним размером зерен, соответственно, 300 нм и 7 мкм, с гладкой и конусообразной 
морфологией поверхности. Образцы вольфрама с  ультрамелкозернистой структурой получили 
с помощью интенсивной пластической деформации, конусообразную морфологию поверхности — 
путем высокодозного облучения ионами Ar+ с энергией 30 кэВ. Установлено, что блистеры при 
облучении ионами гелия с флуенсом 1018 ион/см2 образуются как на мелкозернистых, так и на 
ультрамелкозернистых образцах. На мелкозернистых образцах часть блистеров была с удаленными 
крышками, в  то время как на  ультрамелкозернистых образцах все блистеры были целыми. 
Толщина крышек, диаметр блистеров зависит от размера зерен. Обнаружено, что конусообразная 
морфология поверхности ультрамелкозернистого вольфрама подавляет образование блистеров. 
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ВВЕДЕНИЕ
Дивертор, устройство, предназначенное для 

отвода тепла и  загрязнений из  плазмы, является 
одним из  важнейших элементов в  термоядерном 
реакторе [1]. В процессе работы реактора дивертор 
будет подвергаться тепловому воздействию, облу-
чению нейтронами, ионами гелия и изотопов водо-
рода. В связи с этим фактом предъявлены жесткие 
требования к материалу дивертора: он должен вы-
держивать воздействие высокодозного облучения 
и  высоких температур без существенной деграда-
ции его свойств, формы и поверхности. В проекте 
Международного экспериментального термоядер-
ного реактора (ИТЭР) в качестве материала стенок 
дивертора запланировано использовать вольфрам, 

как материал с  высокой температурой плавления 
и  теплопроводности, низким коэффициентом 
теплового расширения и  коэффициентом распы-
ления, низкой способностью захвата изотопов H+. 
Вместе с  тем при использовании вольфрама для 
стенок дивертора сталкиваются с  рядом проблем. 
В частности, при облучении ионами гелия на по-
верхности вольфрама возникают нежелательные 
образования типа “пух”, блистеры, что приводит 
к  росту эрозии поверхности [2–5]. Вырванные 
с  поверхности наночастицы вольфрама могут 
попасть в плазму и охладить ее, привести к срыву 
разряда плазмы и остановке работы реактора.

Повышение стойкости вольфрама к облучению 
ионами гелия можно обеспечить формированием 
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ультрамелкозернистой структуры [6–9], созданием 
специальной морфологии его поверхности. Напри-
мер, в  [10] показано, что ультрамелкозернистая 
структура вольфрама увеличивает пороговое для об-
разования блистеров значение флуенса облучения, 
в [11] сдерживает образование крупных блистеров. 
Имеются предпосылки, что ультрамелкозернистая 
структура может сдержать образование “пуха” [12]. 
Конусообразная [13, 14] и наноканальная [15] мор-
фологии поверхности также могут предотвратить 
или затормозить образование как блистеров, так 
и  “пуха”. В  связи с  этим представляется интерес-
ным совместить положительные факторы, предот-
вращающие образование блистеров, “пуха”  — 
формирование ультрамелкозернистой структуры 
в  объеме вольфрама и  создание конусообразной 
морфологии на его поверхности.

В настоящей работе приведено сравнение 
блистерообразования при высокодозном облуче-
нии ионами He+ с энергией 30 кэВ для образцов 
с ультрамелкозернистой и мелкозернистой струк-
турой с  полированной (гладкой) поверхностью 
и  ионно-индуцированной конусообразной мор-
фологией поверхности. 

ЭКСПЕРИМЕНТ И МЕТОДЫ 
ИССЛЕДОВАНИЯ

Материалом для исследований выбрали поли-
кристаллический вольфрам марки ВА с  химиче-
ским составом (в мас. %): W 99.931, Al 0.002, Fe 0.009, 
Ni 0.004, Ca 0.010, Si 0.004, Mo 0.040. Исходным 
образцом являлся слиток поликристаллического 
вольфрама с размером зерен до 1 мм, полученный 
двукратной аргонно-дуговой переплавкой. Из 
слитка вырезали заготовки в форме дисков диамет-
ром 10 мм, толщиной 1 мм. Заготовки механически 
шлифовали и  промывали в  ультразвуковой ванне 
в ацетоне для удаления загрязнений. Ультрамелко-
зернистую структуру образцов получали интенсив-
ной пластической деформацией методом кручения 
на 6 оборотов под высоким давлением [16–19] при 
усилии гидравлического пресса около 50  тонн, 
при комнатной температуре. Для деформации ис-
пользовали наковальни с  плоской поверхностью. 
Давление на образец в процессе деформации кру-
чением достигало 5–6 ГПа. 

В сравнительных экспериментах использовали 
мелкозернистые образцы, которые получали отжи-
гом ультрамелкозернистых образцов. Температуру 
отжига выбрали исходя из предварительного изме-
рения температуры рекристаллизации ультрамел-
козернистого образца методом дифференциальной 
сканирующей калориметрии (ДСК) с  помощью 
синхронного термического анализатора STA 449 
F1 Jupiter NETZSCH (Германия). На  зависимости 

теплового потока от  температуры нагрева ультра-
мелкозернистого образца около 1250°C наблюдали 
экзотермический пик, что связано с  рекристал-
лизацией зерен. Это коррелирует с  температурой 
рекристаллизации деформированного вольфрама 
≈ 1300°C [20]. Полная рекристаллизация структуры 
деформированного вольфрама, по данным [21], на-
ступает при температуре 1400°C. Это подтверждает-
ся и в [22], где было показано, что отжиг ультрамел-
козернистого вольфрама при 1400°C привел к росту 
среднего размера зерен до  2  мкм. Таким образом, 
для получения образцов с мелкозернистой структу-
рой ультрамелкозернистые образцы отжигали при 
1500°C в течение 1 ч в вакууме при давлении 10–3 Па.

Поверхность всех исследуемых образцов ме-
ханически шлифовали на  кругах с  напылением 
из SiC с понижением зернистости от 600 до 4000. 
Полировку поверхности проводили в  растворе 
1  мас. % NaOH+H2O при напряжении 16.5 В  и 
токе 1.1 А при комнатной температуре. 

Морфологию образцов исследовали с  помо-
щью растрового электронного микроскопа (РЭМ) 
Tescan Mira 3LHM в  режиме детектирования 
обратно-отраженных электронов. Размер и  ори-
ентацию зерен определяли методом дифракции 
обратно-отраженных электронов с шагом скани-
рования от 40 нм до 1 мкм. 

Ионное облучение ультрамелкозернистых 
и  мелкозернистых образцов проводили на  масс-
монохроматоре НИИЯФ МГУ [23]. Для выявления 
влияния размера зерен на  образование блистеров 
образцы с  гладкой поверхностью облучали нор-
мально падающими ионами He+ с энергией 30 кэВ 
при флуенсе 1 × 1018 ион/см2. Для выявления влия-
ния конусообразной морфологии поверхности 
на  образование блистеров ультрамелкозернистые 
и  мелкозернистые образцы предварительно облу-
чали нормально падающими ионами Ar+ с энерги-
ей 30  кэВ при флуенсе ~1019 ион/см2 [22, 24, 25], 
а  затем облучали нормально падающими ионами 
He+ с  энергией 30  кэВ при флуенсом 1 × 1018 
ион/см2. Во всех случаях облучения пучок ионов 
направляли на половину радиуса дисковых образ-
цов. Температура образцов в  процессе облучения 
не превышала 50°С, ее контролировали с помощью 
хромель-алюмелевой термопары. Морфологию 
поверхности образцов после облучения исследо-
вали с  помощью РЭМ в  режиме детектирования 
вторичных и  обратно-отраженных электронов. 
Поперечный срез делали с  помощью фокусиро-
ванного пучка ионами Ga+ с энергией 30 кэВ. 

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА 
И ОБСУЖДЕНИЕ

Исходный образец вольфрама (слиток) имел 
поликристаллическую структуру с  размером 
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кристаллических зерен до  1  мм (рис.  1а) [24]. 
Исследование с  помощью РЭМ деформирован-
ных кручением образцов показало, что от центра 
к  краю образцов размер зерен неоднороден. 
В  центре образца, где степень деформации была 
минимальная, наблюдали структуру с  крупными 
зернами порядка нескольких сотен мкм. На  по-
ловине радиуса и  на краю образцов наблюдали 
ультрамелкозернистую структуру с  размером 
зерен от  40  нм до  1  мкм при среднем значении 
300  нм (рис.  1б). Размер зерен после отжига 
ультрамелкозернистых образцов составил от  1 
до 25 мкм при среднем значении 7 мкм (рис. 1в). 
Полученные мелкозернистые образцы также, как 
и ультрамелкозернистые образцы, не имели кри-
сталлографической текстуры.

Облучение мелкозернистого образца с полиро-
ванной поверхностью ионами He+ привело к  об-
разованию блистеров диаметром от нескольких со-

тен нм до 2 мкм (рис. 2а). Блистеры располагались 
по  всей поверхности зерен. Наиболее крупные 
по  диаметру блистеры располагались на  зернах 
с  ориентацией параллельно (001), в  то время как 
на  зернах с  ориентацией (111) диаметр блистеров 
был меньше. Это согласуется с  данными о  зави-
симости диаметра блистеров от ориентации зерен  
[26, 27]. Некоторые блистеры имели трещины на пе-
риферии, что указывает на хрупкий характер разру-
шения блистера. При периферийном разрушении, 
как правило, крышки блистеров удаляются [28]. 

После аналогичного облучения ультрамелко-
зернистого образца с полированной поверхностью 
на нем также образовались блистеры, но с диамет-
ром, заметно меньшим 1  мкм (рис.  2б). Многие 
крупные блистеры имели трещины на  вершине 
крышек (рис.  2в). По  сравнению с  мелкозерни-
стым образцом на ультрамелкозернистом образце 
не  было блистеров с  удаленными крышками. 

1 ìì

(à) (á) (â)

1 ìêì 10 ìêì

Рис. 1. РЭМ-изображения, полученные в режиме детектирования обратно-отраженных электронов, морфологии 
исходного (слиток) (а); ультрамелкозернистого (б); мелкозернистого (в) образцов вольфрама.

2 ìêì

(à) (á) (â)

2 ìêì 500 íì

Рис. 2. РЭМ-изображения, полученные в режиме детектирования вторичных электронов, поверхности мелкозер-
нистого (а) и ультрамелкозернистого (б, в) образцов вольфрама после облучения ионами He+.
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По-видимому, флуенс облучения 1 × 1018 ион/см2  
для ультрамелкозернистого вольфрама был недо-
статочен для отрыва крышек блистеров, в то вре-
мя как для мелкозернистого вольфрама при таком 
флуенсе уже происходит отрыв крышек. 

На рис.  3 представлены РЭМ-изображения 
поперечного среза блистеров мелкозернистого 
и  ультрамелкозернистого образца. Поперечный 
срез был сделан травлением с  помощью фокуси-
рованного ионного пучка. Непосредственно перед 
травлением на поверхность образцов с блистерами 
был нанесен слой платины толщиной не  более 
1 мкм с целью получения лучшего качества изобра-
жения и предотвращения завалов на границе среза. 
На  мелкозернистом образце делали поперечный 
срез блистеров наибольшего диаметра. Диаметр 
блистеров в  среднем составлял 1.5  мкм, толщина 
крышек 170  нм (рис.  3а). На  ультрамелкозерни-
стом образце также исследовали блистеры наи-
большего диаметра. На поперечном срезе блистера 
на  ультрамелкозернистом образце можно видеть, 
что блистер захватывает несколько зерен (рис. 3б). 
Диаметр крупных блистеров и толщина их крышек 
в среднем составили 700 и 120 нм соответственно. 

Механизмы образования блистеров на металлах 
широко обсуждены в  работах [28–30]. В  модели 
боковых напряжений движущей силой блистерооб-
разования служат внутренние механические напря-
жения, возникающие из-за распухания облученного 
слоя [31]. Согласно этой модели, толщина крышки t 
связана с диаметром блистера D соотношением: 

	 D = 7.66t3/2{EY/[12S(1 — ν2)]}1/2,	  (1), 
где EY — модуль Юнга; ν — коэффициент Пуассона. 
Сжимающее напряжение S, параллельное поверх-

ности крышки блистера, можно описать выраже-
нием: S = 2.5×10–6 σ, где σ — боковое напряжение, 
значение которого принимают равной пределу 
текучести или пределу прочности на разрыв. Рас-
считаем диаметр блистера подставив в соотноше-
ние (1) экспериментально измеренную толщину 
крышки. Примем модуль Юнга EY для вольфрама 
равный 350 ГПа, коэффициент Пуассона  — 0.28 
(эти величины слабо зависят от  размера зерен). 
Величину σ примем равной пределу прочности 
[28]. Для вольфрама с  ультрамелкозернистой 
структурой, экспериментально измеренный 
предел прочности составил около 2.5  ГПа [32]. 
Предел прочности для мелкозернистого образца 
примем равным 1.6 ГПа [33]. Соотношение (1) 
для диаметра блистера на  ультрамелкозерни-
стом и  мелкозернистом вольфраме примет вид: 
DУМЗ = 17.2t3/2, DМЗ = 21.5t3/2. При толщине крышек 
блистеров на мелкозернистом образце 170 нм и на 
ультрамелкозернистом образце 120 нм, расчетный 
диаметр блистеров равен 1.51 и 0.72 мкм соответ-
ственно. Это коррелирует с  экспериментально 
измеренными диаметрами блистеров. Благодаря 
повышенному пределу прочности, диаметр бли-
стеров на ультрамелкозернистом образце меньше, 
чем на мелкозернистом образце.

Для выявления влияния конусообразной 
морфологии поверхности на  образование бли-
стеров ультрамелкозернистые и  мелкозернистые 
образцы вольфрама облучали ионами Ar+. В  ре-
зультате облучения на  исходной полированной 
поверхности мелкозернистых образцов сфор-
мировалась морфология с перепадом высот между 
зернами (рис.  4а). На  поверхности наблюдали 
как относительно ровные участки, так и участки 
с коническими образованиями. На полированной 

(à) (á)

300 íì300 íì

Рис. 3. РЭМ-изображения, полученные в режиме детектирования вторичных электронов, приповерхностного слоя 
мелкозернистого (а) и ультрамелкозернистого (б) образцов вольфрама, облученного ионами He+. 
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поверхности ультрамелкозернистых образцов 
при тех же условиях облучения сформировалась 
однородная конусообразная морфология [22] 
(рис. 4б). Коническими элементами морфологии 
являлись заостренные зерна и  ионно-индуциро-
ванные конусы. Высота конических образований 
составляла около нескольких сотен нм, концен-
трация ~109  см–2, что сопоставимо с  размером 
зерен и  их концентрацией на  поверхности. Угол 
наклона при основании конических элементов 
морфологии составил около 80°.

После облучения ионами He+ мелкозернистых 
и ультрамелкозернистых образцов, предваритель-
но облученных ионами Ar+ (рис.  4), морфология 
с  перепадом высот между зернами на  мелкозер-
нистом образце и  конусообразная морфология 
на  ультрамелкозернистом образце сохранилась. 
Вместе с  тем на  мелкозернистых образцах 
на  относительно ровных участках поверхности 
образовались блистеры диаметром в  несколько 
мкм (рис.  5а). Некоторые блистеры имели тре-
щины на  периферии. На  ультрамелкозернистых 
образцах блистеры на  ровных участках не  были 
обнаружены (рис. 5в). Однако на этих же участках 
поверхности появились трещины (рис. 5г). Такие 
же трещины были и в некоторых редких областях 
на мелкозернистых образцах. На боковой стороне 
конических элементов морфологии поверхности 
как мелкозернистых, так и ультрамелкозернистых 
образцов блистеры отсутствовали (рис. 5б, 5г). 

Как известно, диаметр блистеров зависит 
не  только от  флуенса облучения, температуры, 

но  и от  шероховатости поверхности [28, 29]. 
Например, как показано в  [34], при облучении 
ионами гелия площадки в  виде квадрата со  сто-
роной 2  мкм монокристаллического вольфрама, 
на  ней образовывались четыре блистера диа-
метром 1  мкм. Облучение квадратной площадки 
со  стороной 1  мкм приводило к  образованию 
единственного блистера диаметром около 1 мкм. 
В результате последующего уменьшения стороны 
квадратной площадки до  размеров менее 1  мкм 
диаметр блистеров уменьшался в  соответствии 
со  стороной квадратной площадки. Следует 
отметить, что блистер не  выходил за  пределы 
облучаемой площадки, его диаметр соответ-
ствовал стороне этой площадки. Подобный 
эффект наблюдали и  в работе [26] где показано, 
что уменьшение расстояния между канавками 
на  шероховатой поверхности образца приводит 
к  уменьшению диаметра образующихся блисте-
ров. При расстоянии между канавками 500  нм, 
диаметр блистеров не превышал 200 нм. 

В настоящей работе на  мелкозернистых об-
разцах, где на  относительно больших и  ровных 
участках поверхности образовывались блистеры, 
их  диаметры преимущественно ограничивались 
лишь другими блистерами. На  ультрамелкозер-
нистых образцах расстояние между различными 
неровностями, коническими элементами морфо-
логии поверхности составляло порядка 100 нм, и, 
видимо, поэтому блистеры не  образовывались. 
В то же время высокие механические напряжения 
в  приповерхностном слое образца, возникшие 
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Рис. 4. РЭМ-изображения, полученные в режиме детектирования вторичных электронов под углом 45°: мелкозер-
нистого (а) и ультрамелкозернистого (б) образцов вольфрама после облучения ионами Ar+. 
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в  результате имплантации ионов гелия, прояв-
ляются на  морфологических элементах в  виде 
трещин. 

Отсутствие блистеров на  боковой стороне 
ионно-индуцированных конусов можно связать 
как c малыми проекционными для образования 
блистеров размерами конусов (~100  нм), так и  c 
тем, что при скользящей ионной бомбардировке 
значительная доля ионов отражается от  поверх-
ности, а  глубина имплантации многократно 
уменьшается [35].

ЗАКЛЮЧЕНИЕ
В работе исследовали влияние ультрамелкозер-

нистой структуры вольфрама и  конусообразной 
морфологии его поверхности на образование бли-
стеров в  результате ионного облучения. Ультра-
мелкозернистую структуру со  средним размером 
зерен 300 нм получали интенсивной пластической 
деформацией образцов вольфрама методом круче-
ния под давлением около 5–6 ГПа. Конусообраз-
ную морфологию на поверхности ультрамелкозер-
нистых образцов с концентрацией конусов около 
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Рис. 5. РЭМ-изображения, полученные под углом 45°: мелкозернистого (а, б) и ультрамелкозернистого (в, г) образ-
цов вольфрама после предварительного облучения Ar+ и последующего облучения He+. 
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109 см–2 формировали высокодозным облучением 
ионами Ar+ с  энергией 30  кэВ при флуенсе  
~1019 ион/см2. Ультрамелкозернистые образцы 
с  гладкой и  конусообразной морфологией по-
верхности облучали ионами He+ с энергией 30 кэВ 
при флуенсе 1 × 1018 ион/см2. Для сравнительных 
исследований использовали мелкозернистые об-
разцы со средним размером зерен 7 мкм. 

В результате облучения ионами He+ на  изна-
чально гладкой поверхности мелкозернистых 
образцов образовались блистеры диаметром 
от  сотен нм до  1–2  мкм. Диаметр блистеров за-
висел от ориентации зерен. Наблюдали блистеры 
как с  периферийным отщеплением крышек, так 
и блистеры с удаленными крышками. На границах 
зерен блистеры не были обнаружены. На поверх-
ности ультрамелкозернистых образцов блистеры 
также образовались, однако их диаметр был мень-
ше 1  мкм. Некоторые блистеры были целыми, 
другие имели трещины на вершине крышек. 

Показано, что диаметр блистера зависит от тол-
щины крышки. Меньший диаметр блистеров 
на  ультрамелкозернистом образце по  сравнению 
с мелкозернистым образцом обусловлен тем, что 
из-за повышенного предела прочности первого 
сдерживается рост блистера на его поверхности.

Формирование конусообразной морфологии 
поверхности ультрамелкозернистого вольфрама 
приводит к  подавлению образования блистеров. 
Малое пространство (~100  нм) между кониче-
скими элементами на  относительно ровной по-
верхности, большой угол наклона при основании 
конусов (80°) затрудняет образование блистеров.
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The influence of ultrafine-grained structure and cone-shaped surface morphology on the formation of blisters 
under irradiation of tungsten with He+ ions with energy of 30 keV has been studied. In comparative experiments, 
ultrafine-grained and fine-grained samples with an average grain size of 300 nm and 7 μm, respectively, with 
smooth and cone-shaped surface morphology were used. The ultrafine-grained structure in tungsten samples was 
obtained by severe plastic deformation, and the cone-shaped surface morphology was obtained by high-fluence 
irradiation with Ar+ ions with the energy of 30 keV. It was found that blisters are formed on both fine-grained 
and ultrafine-grained samples when irradiated with He+ ions with a fluence of 1018 ion/cm2. On the fine-grained 
samples, some of the blisters were with the lids removed, while in the ultrafine-grained samples, all blisters were 
intact. The thickness of the lids, diameter of the blisters depends on the grain size. The cone-shaped surface 
morphology on ultrafine-grained tungsten was found to suppress blister formation. 

Keywords: tungsten, helium, argon, severe plastic deformation, high-pressure torsion, ultrafine-grained 
structure, ion irradiation, blisters.
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