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Приведены результаты экспериментального исследования генерации поверхностных плазмон-
поляритонов терагерцевого диапазона. Для генерации был использован метод дифракции на краю, 
когда пучок излучения фокусировался на границу раздела металл–диэлектрик. Установлено, что 
при нормальном падении пучка эффективность генерации плазмон-поляритонов максимальна, 
а  полуширина зависимости эффективности генерации от  угла падения излучения в  плоскости 
образца составила 6.0°±0.5°. Показано, что эффективность генерации имеет максимум при 
определенном смещении центра пучка падающего излучения относительно границы раздела 
металл–диэлектрик. Полуширина этого максимума составила 590±50  мкм, что в  пределах 
погрешности согласуется с теорией.
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ВВЕДЕНИЕ
Поверхностные плазмон-поляритоны (далее 

плазмон-поляритоны) представляют собой 
особый вид неизлучающих поверхностных 
электромагнитных волн [1]. Свойства этих волн 
хорошо изучены в  видимом и  среднем инфра-
красном диапазонах, где они нашли широкое 
применение [2, 3]. Исследования плазмон-
поляритонов терагерцевого (ТГц) диапазона 
начались относительно недавно, так как источ-
ники и  чувствительные приемники ТГц-излу-
чения были созданы лишь во второй половине 
прошлого века [4, 5]. В  теоретических работах  
[6, 7] было показано, что длина распростра-
нения таких плазмон-поляритонов должна 
составлять десятки метров, что на  несколько 
порядков больше, чем в  видимом диапазоне, 

где длина распространения имеет микронный 
масштаб [8]. Однако в  экспериментах было 
установлено, что длина распространения плаз-
мон-поляритонов ТГц-диапазона (длина волны 
l = 118.8  мкм) составляет лишь десятки сан-
тиметров [9]. Для уменьшения радиационных 
потерь, связанных с  неоднородностью поверх-
ности, используют диэлектрические покрытия, 
позволяющие в несколько раз увеличить длину 
распространения [10]. Тем не  менее возмож-
ность распространения плазмон-поляритонов 
ТГц-диапазона на  значительные расстояния 
позволяет говорить о перспективности исполь-
зования волн этого типа в  устройствах связи 
следующего поколения [11, 12], а  планарность 
структур обеспечит компактность и  энергоэф-
фективность таких устройств [13, 14].
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Для генерации плазмон-поляритонов суще-
ствует множество методов. Наиболее известными 
являются схемы Отто и К речмана, в  которых 
элементом согласования поверхностных и объем-
ных электромагнитных волн является призма  
[15, 16]. Однако эти методы применимы, лишь 
когда длина распространения плазмон-полярито-
нов достаточно мала и составляет порядка длины 
волны излучения. Это связано с тем, что элемент 
согласования работает и  в обратную сторону, 
преобразуя сгенерированные плазмон-поляри-
тоны в  объемное излучение. Другим методом 
является применение дифракционных решеток 
на поверхности образца [17]. Решетки могут быть 
сформированы в виде микрорельефа или с помо-
щью ультразвуковой волны [18]. Важно отметить, 
что практическое применение этого метода за-
труднено селективностью генерации плазмон-по-
ляритонов по длине волны на решетке с заданным 
периодом, а также значительными потерями при 
распространении плазмон-поляритонов по  ре-
шетке и  при их  переходе из  области решетки 
на  гладкий участок поверхности. Наконец, наи-
более простым, эффективным и малодисперсным 
методом для генерации плазмон-поляритонов 
оказался метод дифракции на  краю, когда излу-
чение фокусируется на  ребро проводящей по-
верхности [19]. В [20] было показано, что в этом 
случае эффективность генерации на ТГц-частотах 
составляет 60±15% при теоретической оценке 
максимальной эффективности 80%. В указанной 
работе для генерации плазмон-поляритонов вы-
бирали простейшую геометрию, когда сфокуси-
рованный пучок падал по нормали к торцу образ-
ца, а положение фокального пятна по отношению 
к ребру образца определяли по максимуму сигна-
ла. Более детально нахождение оптимального по-
ложения и угла падения в работе не исследовали. 
Подобные работы в литературе также не найдены.

Целью настоящего исследования был поиск 
оптимальных условий генерации плазмон-по-
ляритонов ТГц-диапазона методом дифракции 
на краю, а также определение диапазонов основ-
ных параметров, при которых данный метод реа-
лизуется достаточно эффективно.

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ
В рамках простейшей модели исходный пучок 

излучения падает по  нормали на  торец образца, 
представляющего собой трехслойную структу-
ру: металл–диэлектрическое покрытие–воздух. 
Волной вектор падающей волны направлен вдоль 
металлизированной поверхности, а ее пучок имеет 
гауссов профиль и  p-поляризацию. Как показано 
в [20], для эффективной генерации плазмон-поля-

ритонов пучок излучения должен быть сфокусиро-
ван, чтобы удовлетворить условию максимального 
перекрытия полей падающей волны Ez

inc и  плаз-
мон-поляритона Ez

SPP над поверхностью провод-
ника (рис.  1). К  тому же в  фокальной плоскости 
продольная составляющая волнового вектора 
падающей волны наиболее близка к  волновому 
вектору плазмон-поляритона, что позволяет 
при незначительной добавке волнового вектора, 
возникающего на  краю проводника, наиболее 
эффективно удовлетворить условию сохранения 
импульса. Согласно экспериментальным данным, 
поле сгенерированного плазмон-поляритона 
в  ТГц-диапазоне локализовано внутри металла 
на  глубину порядка 0.25  мкм [21], тогда как глу-
бина проникновения в  воздух может составлять 
от нескольких сотен микрометров до миллиметров 
в  зависимости от  длины волны и  параметров ди-
электрического покрытия [22, 23].

Для приближенной оценки эффективности 
генерации методом дифракции на  краю ис-
пользуют классическое выражение, в  котором 
определяющее значение имеет интеграл пере-
крытия поля падающего пучка и  поля плазмон-
поляритона. Поскольку точное аналитическое 
решение получить не  удается, приведем основ-
ные известные результаты [20]. Установлено, что 
эффективность генерации плазмон-поляритона 
зависит как от  толщины диэлектрического по-
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Рис. 1. Схема генерации плазмон-поляритонов ме-
тодом дифракции на  краю: а  – вид сбоку; б  — вид 
сверху.
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крытия, так и  от расстояния z0 от  центра пучка 
до  металлизированной поверхности образца. 
Важно отметить, что и  в том, и  в другом случае 
зависимость имеет один максимум. Расчеты при 
длине волны 141 мкм показывают, что для покры-
тия из сульфида цинка (ZnS), который является 
диэлектриком в ТГц-диапазоне [24], и подложки 
из Au оптимальной является толщина покрытия 
около 0.5  мкм; центр пучка излучения должен 
быть смещен примерно на  300  мкм от  метал-
лизированной поверхности образца в  сторону 
воздушной области.

На рис.  2 приведены результаты моделирова-
ния зависимости эффективности генерации плаз-
мон-поляритона от  расстояния от  центра пучка 
до  металлизированной поверхности образца для 
диэлектрического покрытия из  ZnS толщиной 
1.75  мкм при длине волны излучения 131  мкм, 
на  которой были выполнены эксперименты 
в  настоящей работе. Предполагали, что пучок 
ТГц-излучения дополнительно фокусировался, 
а  ширина перетяжки (расстояние от  оси пучка, 
на котором интенсивность уменьшается в e2 раз) 
составляла 450 мкм, как и в [20].

При сравнении результатов на рис. 2 с данны-
ми [20] для толщин покрытия 0.7 и 1 мкм видно, 
что оптимальное расстояние z0 уменьшается с уве-
личением толщины диэлектрического покрытия. 
Это связано с тем, что поле плазмон-поляритона 
больше локализуется вблизи поверхности, а  для 
наибольшей эффективности его генерации поле 
падающего излучения должно как можно слабее 
отличаться от поля плазмон-поляритона.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА
В ходе исследований использовали излу-

чение Новосибирского лазера на  свободных 
электронах с  длиной волны l = 131  мкм. Схе-
ма экспериментальной установки приведена 
на  рис.  3. Для отклонения и  фокусировки пучка 
ТГц-излучения применяли систему из  плоского 
и  цилиндрического зеркал. Образец представлял 
собой стеклянную подложку, покрытую мето-
дом магнетронного распыления непрозрачным 
слоем золота толщиной 300 нм, поверх которого 
методом электронно-лучевого испарения было 
нанесено диэлектрическое покрытие из  ZnS 
толщиной 1.76  мкм. Диэлектрическое покрытие 
было необходимо для повышения эффективности 
генерации плазмон-поляритонов и  уменьшения 
их потерь на неоднородностях и шероховатостях 
поверхности [22]. Так как при генерации методом 
дифракции на краю возникают паразитные объем-
ные волны, для экранирования было использо-

вано пространственное разделение плазмон-по-
ляритонов и  паразитных объемных волн за  счет 
скругления поверхности образца примерно на 15° 
от входной плоскости. Также для дополнительной 
защиты от паразитных засветок на выходной ча-
сти образца был установлен непрозрачный экран 
из поролона на расстоянии 2 мм от поверхности 
образца. Образец был расположен на  вертикаль-
ном трансляторе, снабженном поворотным сто-
ликом. Транслятор использовали для изменения 
положения ребра образца по отношению к сфоку-
сированному пучку (расстояние z0), а поворотный 
столик  — для изменения угла наклона θ волно-
вого вектора падающей волны по  отношению 
к  нормали торца образца. В  качестве приемника 
излучения применяли оптоакустический детек-
тор  — ячейку Голея (Tydex) совместно с  син-
хронным детектором SR-830 (Stanford Research). 
Для детектирования излучения интенсивность 
исходного ТГц-пучка модулировали с  помощью 
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Рис.  2. Теоретическая зависимость эффективности 
генерации плазмон-поляритонов ТГц-диапазона 
от положения центральной части пучка падающего 
излучения.

1 2

3 4 5 6

Рис.  3. Схема экспериментальной установки: 1  — 
пучок ТГц-излучения; 2 — плоское зеркало; 3 — ци-
линдрическое зеркало; 4 — образец; 5 — экран; 6 — 
приемник излучения.
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механического обтюратора, а поляризацию зада-
вали с помощью литографического поляризатора.

Чтобы подтвердить, что приемник детектирует 
именно плазмон-поляритоны, были проведены 
два дополнительных эксперимента. Во-первых, 
изменяли поляризацию ТГц-пучка. Установлено, 
что интенсивность детектируемого излучения 
определялась только p-составляющей. Во- 
вторых, на  небольшой участок вблизи выхода 
образца вдоль поверхности дополнительно раз-
мещали лист бумаги толщиной 20 мкм и длиной 
около 2  см. В  этом случае сигнал на  приемнике 
становился на  уровне шума. Оба этих экспери-
мента подтвердили плазмонную, а не паразитную 
природу регистрируемого сигнала с приемлемым 
соотношением сигнал/шум.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
Полученная зависимость интенсивности ISPP 

плазмон-поляритона от  расстояния z0 от  центра 
пучка до металлизированной поверхности образца 
приведена на рис. 4. Для удобства она была нор-
мирована на  максимальное значение max(ISPP), 
а  также по  оси абсцисс отложено отклонение z0 
от  оптимального положения z0

(opt). Полуширина 
данной зависимости составила Dz0 = 590 ± 50 мкм. 
Это значение в  пределах погрешности совпадает 
с оценкой 600 мкм, полученной выше в теорети-
ческой части работы (рис.  2). Данный результат 
подтверждает, что интенсивность плазмон-по-
ляритонов при генерации методом дифракции 
на  краю определяется интегралом перекрытия 
поля плазмон-поляритонов и  поля падающего 
излучения.

Зависимость интенсивности плазмон-по-
ляритонов от  угла падения пучка излучения 
(рис.  5)  также имеет максимум. Наибольшая 
эффективность генерации плазмон-поляритонов 
наблюдалась при нормальном падении пучка 
излучения на образец, тогда как при отклонении 
угла наблюдался плавный спад эффективности 
генерации. Отметим, что полученная зависи-
мость плавная, а  ее полуширина составляет 
Dq = 6.0° ± 0.5°.

Так как точной аналитической теории для 
нахождения эффективности генерации плазмон-
поляритонов методом дифракции на  краю, учи-
тывающей угол наклона θ, не существует, можно 
предложить следующую интерпретацию угловой 
зависимости исходя из следующих простых сооб-
ражений. При изменении угла падения излучения 
входное ребро образца уже не  совпадает с  фо-
кальной плоскостью для падающего излучения. 
Поэтому волновой фронт падающего излучения 

уже не  является плоским, что нарушает условия 
согласования волновых векторов плазмон-поля-
ритонов и объемного излучения, а падение излу-
чения под углом уменьшает плотность энергии 
генерируемых плазмон-поляритонов.
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Рис. 4. Экспериментальная зависимость эффектив-
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щего излучения.

0.8

1

0.4

0.6

I S
P
P
/m

ax
(I

S
P
P
)

0.2

0
–2 2 4 6

θ, ãðàä
0

Рис. 5. Экспериментальная зависимость эффектив-
ности генерации плазмон-поляритонов ТГц-диапа-
зона от угла падения пучка излучения.
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ЗАКЛЮЧЕНИЕ
Проведенное исследование подтвердило 

теоретическую модель, согласно которой эф-
фективность генерации плазмон-поляритонов 
ТГц-диапазона методом дифракции на  краю 
определяется интегралом перекрытия полей ис-
ходного и  генерируемого излучения, зависящего 
как от  взаимного расположения сфокусирован-
ного излучения и ребра образца, так и от угла па-
дения излучения по отношению к нормали торца 
образца. Полученные результаты свидетельству-
ют об  отсутствии необходимости высокоточной 
юстировки при использовании этого метода 
генерации плазмон-поляритонов в ТГц-диапазо-
не, что еще раз подтвердило достоинство метода 
дифракции на  краю как наиболее подходящего 
для применения в устройствах ТГц-плазмоники.
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On Optimal Conditions for Generation of Terahertz Surface  
Plasmon-Polaritons by the End-Fire Coupling Technique
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The results of an experimental study of the generation of surface plasmon-polaritons in the terahertz range 
are presented. The end-fire coupling technique has been used for generation, when the beam is focused on 
the metal–dielectric interface. It has been found that at normal beam incidence, the efficiency of plasmon-
polaritons generation is maximum, and the half-width of the dependence of the generation efficiency on the 
angle of radiation incidence in the sample plane is 6.0° ± 0.5°. It is shown that the generation efficiency has 
a maximum at a certain shift of the center of the incident beam relative to the metal–dielectric interface. 
The half-width of this maximum is 590 ± 50 μm, which is consistent with theory within the error limits.

Keywords: surface plasmon-polariton, terahertz radiation, end-fire coupling technique, generation 
efficiency.
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