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Представлены результаты исследования пленок оксида кремния, полученных методом PECVD 
на Si-подложках. Их имплантировали ионами 64Zn+ с энергией 50 кэВ (доза 7 × 1016 cм–2), а затем 
отжигали в  атмосфере кислорода при повышенных температурах. Обнаружено, что после 
имплантации в  пленке SiO2 цинк распределен по  нормальному закону с  максимумом около 
40 нм. После имплантации цинк находится в пленке оксида кремния как в металлической фазе 
(ближе к поверхности пленки), так и в окисленном состоянии (в глубине пленки). После отжигов 
до 800°С профиль цинка смещается вглубь пленки, в этом случае цинк находится в пленке только 
в  окисленном состоянии. При высоких температурах (более 800°С) профиль цинка смещается 
к поверхности пленки.
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ВВЕДЕНИЕ
Нанокластеры, внедренные в  прозрачную ди-

электрическую среду и обладающие интересными 
оптическими свойствами, можно рассматривать 
как перспективные материалы для оптоэлектрон-
ных устройств. Это побуждает проводить иссле-
дования, связанные с синтезом таких материалов. 
Одним из современных полезных и универсальных 
нанотехнологических методов их  получения яв-
ляется ионная имплантация [1]. В последние годы 
широкое распространение получили исследования 
в  области создания нанокластеров оксида цинка 
в  прозрачных средах, поскольку ZnO является 
прямозонным материалом с  шириной запрещен-
ной зоны 3.37 эВ и имеет большую энергию связи 
электрона и дырки в экситоне 60 мэВ [2]. Послед-
нее позволяет получать устойчивое УФ-излучение, 
поэтому прозрачные среды с  нанокластерами 

из ZnO смогут найти применение в лазерах, свето-
диодах [3] и электролюминесцентных дисплеях [4]. 
Кроме того, перспективно применение ZnO также 
в  солнечных элементах [5], в  сенсорных газовых 
устройствах [6], приборах памяти (мемристорах) 
[7], для медико-биологических целей [8, 9], в при-
борах спинтроники [10], так как обнаружено, что 
ZnO в форме наночастиц обладает ферромагнетиз-
мом уже при комнатной температуре.

В качестве базового элемента мемристоров 
оксид кремния с  примесью цинка исследован 
достаточно широко [11, 12]. В  частности, в  таких 
мемристорах низкоомный кремний мог выполнять 
роль нижнего электрода [13]. В случае металличе-
ского нижнего электрода пленку оксида кремния 
в  большинстве случаев создавали магнетронным 
напылением [14, 15]. Также для этих целей приме-
няли и электронно-лучевое испарение [16]. 
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В работе представлены результаты иссле-
дования пленок оксида кремния, полученных 
плазменно-химическим осаждением из  газовой 
фазы (PECVD  — plasma enhanced chemical vapor 
deposition) и легированных ионами Zn. Затем эти 
пленки проходили термообработку в  атмосфере 
кислорода при повышенных температурах.

ОБРАЗЦЫ И МЕТОДИКА ЭКСПЕРИМЕНТА
На кремниевых подложках CZ кремния 76 КЭФ 

0.01 толщиной 380 нм с ориентацией (111) методом 
PECVD формировали пленки оксида кремния 
толщиной 140  нм. Затем их  имплантировали при 
комнатной температуре ионами цинка с энергией 
50  кэВ, флуенс 7 × 16  см–2, плотность тока была 
менее 0.5 мкА/см2 для уменьшения эффектов на-
грева. Далее пленки отжигали в потоке кислорода 
(250 л/ч) в  диапазоне от  400 до  1000°С с  шагом 
100°С в течение 1 ч на каждом шаге. После отжигов 
профили Zn исследовали с  помощью резерфор-
довского обратного рассеяния (РОР) ионов гелия 
He2+ с энергией 700 кэВ, угол рассеяния 115°. 

Химическое состояние атомов цинка и  фа-
зовый состав пленки определяли с  помощью 
электронной оже-спектроскопии. Исследование 
проводили на  электронном оже-спектрометре 
JAMP-9510F (JEOL). При исследовании парамет-
ры электронного пучка составляли: угол наклона 
образца относительно нормали к  первичному 
электронному пучку 30°, энергия первичного 
электронного пучка 10 кВ, ток пучка 34 нА. При 
исследовании приповерхностной области плот-
ность первичного тока и степень расфокусирова-
ния первичного пучка выбирали из соображений 
минимизации зарядки образца без потери вто-
ричного сигнала в процессе накопления спектра, 
а также для уменьшения артефактов воздействия 

электронного и ионного пучков на образец. Диа-
метр области анализа составлял 170 мкм. 

Параметры полусферического анализатора 
электронов: режим работы анализатора M4 с по-
стоянным задерживающим потенциалом и отно-
сительным энергетическим разрешением 0.3%. 
Параметры ионного источника при профильном 
анализе: энергия ионов аргона составляла 2000 эВ, 
угол травления 41° относительно плоскости об-
разца (угол травления обусловлен конструкцией 
спектрометра и  определяется наклоном образца 
относительно оси анализатора). 

Толщину проанализированного слоя опреде-
ляли по средней скорости распыления пленки SiO2 
известной толщины при аналогичных параметрах 
ионного пучка. Скорость составляла 12.3 нм/мин.

Пересчет интенсивностей оже-пиков в  кон-
центрации проводили по  модели гомогенного 
распределения элементов в анализируемом слое 
с  учетом относительных коэффициентов обрат-
ной элементной чувствительности [17]. Изме-
нение формы и  энергии оже-пика конкретного 
атома в зависимости от химического окружения 
из-за изменения энергии связи электронов 
на  основном уровне и  локальной плотности 
состояний в  валентной зоне подробно рассмот-
рено в  монографии [18]. В  настоящее время 
возможные химические состояния элемента 
по оже-спектрам идентифицируют методом фак-
торного анализа [19]. В качестве “факторов” бы-
ли выбраны оже-спектры Zn и ZnO, имеющиеся 
в базе данных JEOL. Эталонные образцы анали-
зировали при тех же условиях, что и исследуемые 
образцы. Коэффициенты обратной чувствитель-
ности присутствующих в слоях элементов опре-
деляли по вышеуказанным эталонным образцам.
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Рис. 1. Экспериментальные РОР-спектры: а – после имплантации цинком (1) и после отжигов при 600 (2) и 800°С (3); 
б — зона цинка после имплантации (1), после отжигов при температуре 600 (2) и 800°С (3).
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РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
РОР-исследования

На рис.  1а представлены экспериментальные 
РОР-спектры пленок SiО2 после имплантации 
цинком и после отжигов. На рисунке Si(1) означа-
ет кремний на поверхности пленки, Si(2) — фронт 
кремниевой подложки, O — кислород на поверх-
ности пленки (кислородная “полочка” заканчи-
вается примерно в 110 канале), от 750 до 900 кана-
лов расположена область Zn. На рис. 1б выделена 
область цинка на  РОР-спектрах после отжигов 
в  окислительной среде. Установлено, что после 
имплантации спектр цинка имеет нормальную 
форму (рис. 1б, кривая 1). 

На рис.  2 представлены профили цинка, 
пересчитанные из  РОР-профилей по  программе 
SIMNRA [20]. Максимум имплантированного 
цинка находится на  глубине ~40  нм, что соот-
ветствует расчетной величине по  программе 
SRIM [21]. По  мере отжига изменяется профиль 

имплантированного цинка: он несколько сме-
щается вглубь пленки (в область каналов с мень-
шим номером) (рис.  1б, кривые 2, 3), причем 
наблюдается восходящая диффузия. При высоких 
температурах отжига (700°С и  выше) профиль 
цинка расплывается, при температурах более 
800°С он начинает сдвигаться к  поверхности 
пленки. На рис. 3а представлены также профили 
кислорода, кремния и цинка в пленке SiО2 после 
имплантации, а на рис. 3б — те же самые профили 
для образца после отжига при 800°С. 

Оже-спектрометрические исследования

Образцы после имплантации. При факторном 
анализе профилей элементов Si, O и Zn в пленке 
оксида кремния выявлены два пика распределения 
концентрации цинка по  глубине: окисленного 
и неокисленного, причем атомы цинка, связанные 
с кислородом, находятся на бóльшей глубине. Ока-
залось, что уменьшенные концентрации кремния 
и кислорода соответствуют разным областях про-
филя цинка. Максимум концентрации металличе-
ского цинка совпадает с минимумом концентрации 
кислорода, в то время как максимум концентрации 
окисленного цинка совпадает с минимум концен-
трации кремния. Максимум имплантированного 
цинка соответствует глубине 30 нм. Установлено, 
что после имплантации цинк частично находится 
и  в окисленном состоянии, причем его распре-
деление сильно уширено по  сравнению с  метал-
лическим цинком, и  его максимум соответствует 
глубине 55 нм.

На рис. 4а представлены оже-спектры, снятые 
на  глубине 30  нм при максимуме профиля ме-
таллического цинка. Из разложения следует, что 
на этой глубине в значительно мере присутствует 
как металлический цинк, так и  оксид цинка. 
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Рис. 3. Профили Si (1), O (2), Zn (3) после имплантации (а) и после отжига при 800°С (б).
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Рис.  2. Расчетные профили Zn после импланта-
ции (1) и после отжига при 600 (2) и 800°С (3).
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На  рис.  4б представлены оже-спектры, снятые 
на  глубине 55  нм в  максимуме профиля оксида 
цинка. Из разложения следует, что на этой глуби-
не присутствует практически только оксид цинка.

Образцы после отжига при 700°С. Из анализа 
профилей элементов Si, O и Zn следует, что высота 
профиля имплантированного цинка значительно 
уменьшилась, что отвечает его количественно-
му уменьшению, причем его максимум остался 
на той же глубине 30 нм. 

На рис. 5 представлен оже-спектр Zn на глуби-
не 60 нм. Из разложения спектра цинка следует, 
что на  этой глубине присутствует практически 
только оксид цинка, т.е. после отжига при 700°С 
практически весь цинк окислился. Установлено, 
что профиль распределения цинка по  глубине 
немного уширяется. Максимум распределения 

остатков металлического цинка остался на  той 
же глубине, что и  до отжига. После отжига при 
700°С также изменяется химическое состояние 
имплантированного цинка: его заряд становится 
практически равным +2, т.е. имеет место почти 
полное окисление металлического цинка до фазы 
оксида цинка ZnO. 

ВЫВОДЫ
После имплантации профиль цинка имеет 

нормальную форму с  максимумом около 40  нм. 
При отжигах профиль имплантированного цинка 
смещается вглубь пленки. Наблюдается восхо-
дящая диффузия. После имплантации в  образце 
присутствуют как металлическая, так и  окис-
ленная фазы цинка, максимум нейтрального 
цинка находится на  глубине 35  нм, а  максимум 
положительно заряженного цинка (окисленно-
го) — на глубине 55 нм. После отжига при 700°С 
в образце присутствует фаза только окисленного 
цинка, ее максимум соответствует глубине 60 нм. 
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Study of SiO2 Films Obtained by PECVD and Doped with Zn

V. V. Privezentsev1, *, A. A. Firsov1, V. S. Kulikauskas2, V. V. Zatekin2, E. P. Kirilenko3,  
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The results of studying silicon oxide films obtained by plasma enhanced chemical vapor deposition on Si 
substrates are presented. They were implanted with 64Zn+ ions with an energy of 50 keV (dose 7 × 1016 cm–2)  
and then annealed in oxygen atmosphere at elevated temperatures. It has been found that after implantation, 
zinc is distributed in the SiO2 film according to the normal law with a maximum of about 40 nm. After 
implantation, zinc is in the silicon oxide film both in the metallic phase (closer to the film surface) and 
in the oxidized state (in the film depth). After annealing up to 800°C, the zinc profile shifts into the film 
depth; in this case, the zinc is in the film only in the oxidized state. At high temperatures (over 800°C), the 
zinc profile shifts toward the film surface. 

Keywords: Zn, SiO2 film, implantation, annealing, ZnO, Rutherford backscattering, Auger electron 
spectroscopy.
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