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С помощью современной полной молекулярно-динамической модели распыления 
монокристаллов с  учетом падения ионов на  поверхность исследованы механизмы 
формирования распределения по  полярному и  азимутальному углам вылета атомов, 
распыленных с  поверхности грани (001) Ni ионами Ar с  энергией 200  эВ. Показано, что 
распыленные атомы, перефокусированные по  азимутальному углу, вылетают только вблизи 
направлений, соответствующих направлениям на  центры линз из  двух атомов  — ближайших 
к эмитируемому атому соседей в плоскости поверхности. Обнаружено, что в полярном угловом 
распределении распыленных атомов с  энергией 2.5 ± 0.1  эВ в  интервале азимутального угла 
87° ± 1.5°, близкого к центру линзы, наблюдаются три максимума, сформированные атомами 
с различными механизмами вылета. Сделан вывод о том, что эти максимумы возникают только 
за счет поверхностного механизма распыления монокристалла.
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ВВЕДЕНИЕ
Взаимодействие ионных пучков с  поверхно-

стью твердых тел имеет множество практических 
приложений, например, травление поверхности 
[1], ее модификация [2], напыление тонких 
пленок [3]. Одним из часто используемых матери-
алов для мишени является никель или соединения 
с никелем [3–5].

Если начальная энергия иона больше так назы-
ваемой пороговой энергии, то начинается процесс 
распыления атомов мишени, который необходимо 
учитывать. Распределение распыленных атомов 
по  углам и  энергии несет ценную информацию 
о структуре и элементном составе поверхности. 

Известная каскадная теория Зигмунда [6] при-
емлемо описывает интегральный коэффициент 
распыления, но, к сожалению, не может объяснить 
особенности дифференциальных характеристик 
распыленных атомов. Даже в  случае аморфных 
мишеней, не говоря уже о монокристаллических, 
требуется учитывать силы отталкивания, дей-
ствующие на вылетающий атом со стороны бли-
жайших соседей, что было показано в [7].

Ранее в [8] проведено исследование распыления 
монокристалла (001) Ni ионами Ar с энергией 200 эВ 
с использованием современной молекулярно-дина-
мической модели, наиболее приближенной к  экс-
перименту. Был исследован немонотонный сдвиг 



ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ     № 3    2025

Мусин, Самойлов1818

максимума полярного углового распределения 
распыленных атомов при увеличении их энергии. 

В настоящей работе исследования угловых 
распределений распыленных атомов, в том числе 
с  разрешением по  энергии, были продолжены. 
Была поставлена задача выявить механизмы 
формирования, наблюдаемого полярного угло-
вого распределения распыленных атомов для 
определенных значений энергии и азимутально-
го угла в рамках современной полной молекуляр-
но-динамической модели распыления монокри-
сталлов с учетом падения ионов на поверхность, 
без учета тепловых колебаний кристаллической 
решетки. 

МОДЕЛЬ РАСЧЕТА
Для получения результатов, как и в [8], приме-

няли модель численного моделирования, создан-
ную на основе модели из [9, 10] и использующую 
метод молекулярной динамики. В модели создан 
монокристаллический блок (001) Ni из  14 слоев 
(4032 атома), который бомбардировали ионы Ar 
с энергией 200 эВ по нормали к поверхности. Рас-
четы были проведены для температуры 0 К.

Для взаимодействия Ni–Ni использовали ком-
бинированный потенциал: на  больших расстоя-
ниях взаимодействие описывали многочастичным 
потенциалом Акланда [11], на малых расстояниях 
при столкновении атомов в каскаде использовали 
потенциал Зиглера–Бирсака–Литтмарка (ZBL) 
[12]. Эти потенциалы сшивали подобно [13]. Вза-
имодействие Ar–Ni описывали исключительно 
потенциалом ZBL.

Расчеты выполняли на суперкомпьютере “Ло-
моносов-2”. Было рассчитано около 106 событий 
падения иона на поверхность. Ионы падали на по-
верхность грани (001) Ni по нормали к поверхно-
сти в  элементарную треугольную область, точки 

прицеливания выбирали случайным образом 
с использованием равномерного распределения. 

Регистрировали вылетающие с  бомбардиру-
емой поверхности атомы на  расстоянии z1 = 0.3 
и  z2 = 10 Å над усредненной поверхностью кри-
сталла. Записывали три параметра: энергию, по-
лярный и азимутальный углы, характеризующие 
направление вектора скорости распыленного 
атома в  сферической системе координат. По-
лярный угол отсчитывали от нормали к поверх-
ности, азимутальный угол φ = 90° соответствовал 
направлению <010> на  центр линзы из  двух 
ближайших к  узлу на  поверхности атомов по-
верхности. 

Параметры E0, ϑ0, φ0 на  высоте z1 далее назы-
ваются начальными параметрами вылета рас-
пыленного атома, а параметры E, ϑ, φ на высоте 
z2  — параметрами наблюдения, или конечными 
параметрами вылета. 

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Перефокусированные атомы среди всех 
распыленных атомов

Ранее на  более простой модели (без падения 
ионов) было показано [14, 15], что среди всех 
распыленных атомов можно выделить группу 
перефокусированных атомов, которые изначаль-
но вылетали с  одной стороны от  центра линзы 
из двух атомов, ближайших к вылетающему атому 
соседей в плоскости поверхности, а наблюдаются 
с другой стороны от центра линзы (рис. 1). Кроме 
перефокусированных атомов, среди распыленных 
атомов есть собственные по азимутальному углу, 
которые наблюдаются в том же интервале азиму-
тального угла, в  котором происходил их  вылет, 
и фокусированные атомы, для которых интервал 
наблюдения по  азимутальному углу и  интервал 
начального азимутального угла вылета хоть и  не 
совпадают, но находятся с одной стороны от цен-

Рис.  1. Характерные траектории вылета фокусированных (а) и  перефокусированных (б) атомов при рассеянии 
на линзе из двух ближайших к эмитируемому атому атомов поверхности (вид сверху). 
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тра линзы. Для фокусированных атомов конечный 
азимутальный угол φ оказывается ближе к азиму-
тальному направлению на  центр линзы, чем на-
чальный азимутальный угол вылета φ0. В алгорит-
ме обработки данных для МД-модели с падением 
ионов были помечены все перефокусированные 
атомы, благодаря чему их  легко идентифициро-
вать во всех рассчитанных распределениях. 

Коэффициент распыления в  рамках настоя-
щей модели без учета тепловых колебаний кри-
сталлической решетки составил 0.93 ат./ион, что 
меньше значения 1.6 ат./ион из  [16], где также 
моделировали распыление грани (001) Ni ионами 
Ar с  энергией 200  эВ, однако с  меньшей стати-
стикой, с меньшим размером атомного блока и с 
использованием не  многочастичных, а  парных 
потенциалов. В  [16] отмечено, что полученное 
в  работе значение коэффициента распыления 
завышено из-за использования в  модели сфери-
ческого, а  не плоского потенциального барьера 
для распыленных атомов. 

На рис. 2 представлено двумерное угловое рас-
пределение распыленных атомов (одновременно 
по полярному и азимутальному углам) в полярных 
координатах (ρ, φ), где ρ ∝ tgϑ. Здесь наблюдают-
ся максимумы эмиссии (так называемые пятна 
Венера) в азимутальных направлениях φ = 0°, 90°, 
180° и 270°, что согласуется с данных эксперимен-
тов [17–19] и моделирования [16]. Азимутальные 
направления на  максимумы эмиссии совпадают 
с направлениями на центры линз из двух атомов, 
на которых происходит фокусировка и перефоку-
сировка атомов (рис. 1).

На рис. 3 показано двумерное угловое распре-
деление распыленных атомов, аналогичное рис. 2, 
но только для перефокусированных распыленных 
атомов. Видно, что перефокусированные атомы 
наблюдаются вблизи азимутальных направле-
ний φ = 0°, 90°, 180° и  270°, соответствующих 
направлениям на  центры линз из  двух атомов. 
В  остальных азимутальных направлениях сигнал 
перефокусированных атомов практически отсут-
ствует. Поэтому для анализа перефокусированных 
атомов необходимо выбирать несимметричные 
относительно направления на центр линзы интер-
валы азимутального угла, но достаточно близкие 
к нему.

Отдельные максимумы в полярном угловом 
распределении распыленных атомов для 

фиксированных интервалов азимутального угла 
и энергии

На рис.  4 показано распределение распылен-
ных атомов по 1 — cosϑ, наблюдаемых в интерва-
ле азимутального угла φ = 87° ± 1.5° для энергии 

Е = 2.5 ± 0.1  эВ. Видны три отдельных макси-
мума, обозначенные I, II и III, для удобства они 
отделены друг от  друга пунктирными линиями. 
Окрестности максимумов заданы интервалами 
полярного угла ϑ: I  — [51.7°; 58.0°], II  — [60.7°; 
67.7°], III — [70.1°; 75.5°].

Был проведен анализ групп атомов, образую-
щих эти максимумы. Те атомы, которые форми-
руют максимум I, в  основном вылетали вблизи 
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Рис.  2. Угловое распределение всех распыленных 
атомов, полученное в МД-модели распыления грани 
(001) Ni ионами Ar с энергией 200 эВ при темпера-
туре мишени 0 К. Количество падающих ионов ∼106. 
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Рис. 3. Угловое распределение перефокусированных 
распыленных атомов, полученное в МД-модели рас-
пыления грани (001) Ni ионами Ar с энергией 200 эВ 
при температуре мишени 0 К. Количество падаю-
щих ионов ∼106.
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поверхности в  направлениях азимутального 
угла φ0 = 87° ± 1.5°, т.е. являются собственными 
по  азимутальному углу. По  полярному углу эти 
атомы являются сильно блокированными — сле-
дуя [20, 21], так называем атомы, для которых 
полярный угол наблюдения ϑ меньше начального 
полярного угла ϑ0. Блокировка, т.е. отклонение 
по полярному углу в направлении нормали к по-
верхности, происходит из-за столкновения выле-
тающего атома с атомами-соседями. Если эффект 
блокировки превалирует над противоположным 
эффектом  — отклонением в  сторону от  нормали 
к поверхности за счет притяжения к поверхности, 
тогда ϑ < ϑ0, и  атом как раз называется сильно 
блокированным.

Атомы указанной группы вылетают под углами 
ϑ0 порядка 60°–70° от  нормали к  поверхности 
с начальной энергией от 7 до 9 эВ. Их рассеяние 
происходит на  двух ближайших к  эмитируемому 
атому атомах поверхности (т.е. линзе из  двух 
атомов), из-за этого их  траектория значительно 
изгибается к  нормали к  поверхности из-за силь-
ной блокировки. В  зависимости от  начальной 
энергии атом может рассеиваться не  только 
на линзе из двух ближайших атомов поверхности, 
но  и на  атоме, расположенном непосредственно 
за  линзой, в  среднем передавая атомам линзы 
энергию около 5 эВ.

Для атомов из группы, образующих максимум 
II, в целом полярный угол наблюдения ϑ не силь-
но отличается от  начального полярного угла ϑ0. 
Это означает, что блокировка атома компенсиру-

ется притяжением в потенциальном поле поверх-
ности кристалла. Атомы группы II в  основном 
перефокусированные, они вылетают с начальны-
ми азимутальными углами φ0 порядка 100°–106°. 
В процессе перефокусировки их траектория раз-
ворачивается по  азимутальному углу на  13°–19°. 
Средние потери энергии при перефокусировке 
составляют около 5.5 эВ.

Атомы из  группы, образующие максимум III, 
в  основном также перефокусированные. Однако 
механизм их вылета иной, чем для атомов из груп-
пы II. Начальные азимутальные углы у  атомов 
группы III отличаются — порядка 95°–100°, и они 
вылетают ближе к нормали, чем атомы группы II. 
Из-за этого взаимодействие с соседними атомами 
поверхности гораздо слабее, поэтому траектории 
атомов группы III разворачиваются по  азиму-
тальному углу всего на 8°–13°, и средние потери 
энергии составляют 4  эВ. Сильная блокировка 
для этих атомов отсутствует, поэтому оказыва-
ется, что ϑ > ϑ0, т.е. притяжение к  поверхности 
в  процессе вылета доминирует над отклонением 
атомов в сторону нормали к поверхности. 

Полученные результаты показывают, что 
в  рамках использованной модели в  распределе-
нии распыленных атомов по полярному углу для 
фиксированных интервалов азимутального угла 
и  энергии обнаружены три максимума, каждый 
из  которых формируется за  счет различных ме-
ханизмов надповерхностного рассеяния. Таким 
образом, анализ распределений распыленных 
атомов может дать ценную информацию о меха-
низмах распыления и способствовать дифферен-
циации этих механизмов. 

ЗАКЛЮЧЕНИЕ
С помощью современной полной молекуляр-

но-динамической модели распыления монокри-
сталлов с  учетом падения ионов на  поверхность 
исследованы механизмы формирования полярно-
го углового распределения распыленных атомов 
для определенных значений энергии и  азиму-
тального угла наблюдения при бомбардировке 
поверхности грани (001) Ni ионами Ar с энергией 
200 эВ при температуре 0 К. 

В рамках указанной модели впервые рассчита-
но двумерное угловое распределение перефокуси-
рованных распыленных атомов. Обнаружено, что 
перефокусированные атомы наблюдаются вблизи 
азимутальных направлений φ = 0°, 90°, 180° и 270°, 
соответствующих направлениям на  центры линз 
из двух атомов. В других азимутальных направле-
ниях сигнал перефокусированных атомов практи-
чески отсутствует. 
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Рис.  4. Распределение по  1  — cosθ распыленных 
с  грани (001) Ni при бомбардировке ионами Ar 
с  энергией 200  эВ атомов, наблюдаемых в  интер-
вале азимутального угла φ = 87° ± 1.5° с  энергией 
E = 2.5 ± 0.1  эВ. Три отдельных максимума образо-
ваны собственными по азимутальному углу атомами 
(максимум I) и  в основном перефокусированными 
атомами (максимумы II, III).
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Показано, что в полярном угловом распределе-
нии распыленных атомов с энергией 2.5 ± 0.1 эВ 
в  интервале азимутального угла 87° ± 1.5°, близ-
ком к центру линзы, наблюдаются три максимума 
I, II, III. Эти максимумы сформированы атомами 
с различными механизмами вылета. 

Благодаря фиксации значений энергии и  уг-
лов (E, ϑ, φ)  распыленных атомов не  только 
на большом расстоянии от поверхности, но также 
и на расстоянии 0.3 Å от поверхности (E0, ϑ0, φ0), 
впервые проанализирована предыстория вылета 
этих атомов и описаны механизмы их вылета. Про-
ведена классификация атомов, образующих мак-
симумы I, II, III. Атомы, образующие максимум 
I, — собственные по азимутальному углу и сильно 
блокированные (ϑ < ϑ0), II — перефокусированные 
и “собственные” по полярному углу, т.е. для них ϑ 
≈ ϑ0, III — перефокусированные, со слабой блоки-
ровкой по полярному углу (ϑ > ϑ0). 

Таким образом, в экспериментах по распыле-
нию грани (001) Ni с  одновременным высоким 
разрешением по  полярному и  азимутальному 
углам и энергии при низких температурах можно 
ожидать тонкую структуру распределений распы-
ленных атомов для несимметричных относитель-
но направления 〈010〉 интервалов азимутального 
угла. 

Анализ не  только конечных (E, ϑ, φ)  пара-
метров вылета распыленных атомов, но  также 
сравнение их с начальными параметрами вылета 
(E0, ϑ0, φ0) позволяет сделать важный вывод. 
Он заключается в  том, что формирование мак-
симумов в  полярном угловом распределении 
распыленных атомов (рис. 4) происходит только 
за  счет поверхностного механизма распыления 
монокристалла, хотя в  используемой молеку-
лярно-динамической модели с  падением ионов 
представлены и  каскадные, и  поверхностные 
механизмы. Таким образом, подтверждается 
корректность численных моделей, которые ис-
пользованы ранее [14, 15] без учета каскадных 
механизмов распыления. 
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On the Features of the Formation of Polar Distribution  
of Sputtered Atoms in the MD Model of the (001) Ni Face Sputtering
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Using a modern complete molecular dynamics model of single crystal sputtering taking into account ion 
incidence on the surface, the mechanisms of formation of the polar and azimuthal angle distribution of 
atoms sputtered from the surface of the (001) Ni face by Ar ions with an energy of 200 eV are studied. 
It is shown that the sputtered atoms, over focused by the azimuthal angle, eject only near the directions 
corresponding to the directions to the centers of lenses of two atoms in the surface plane neighboring to 
the ejecting atom. It is found that in the polar angular distribution of sputtered atoms with an energy of 
2.5 ± 0.1 eV in the range of the azimuthal angle of 87° ± 1.5°, close to the center of the lens, three maxima 
formed by atoms with significantly different mechanisms of emission are observed. It is concluded that the 
formation of these maxima occurs only due to the surface mechanism of single crystal sputtering. 

Keywords: single crystal sputtering, sputtered atoms, over focused atoms, the surface mechanism 
of sputtering, molecular dynamics method. 
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