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Для положительно заряженной частицы отталкивающие непрерывные потенциалы трех соседних 
цепочек [111] кристалла кремния создают небольшую потенциальную яму, обладающую 
симметрией равностороннего треугольника, описываемой группой C3v. Движение квантовой 
частицы в такой яме представляет интерес в плане проявлений квантового хаоса. Разработанная 
ранее процедура численного нахождения уровней энергии и  волновых функций стационарных 
состояний, учитывающая симметрию данной задачи, использована для  исследования 
поперечного движения каналированных позитронов с энергией 5, 6 и 20 ГэВ. Дана классификация 
стационарных состояний поперечного движения позитрона на  основе теории представлений 
групп. Найдены также волновые функции стационарных состояний в аксиально-симметричной 
потенциальной яме и  показано, каким образом происходит модификация этих функций под 
влиянием возмущения, обладающего симметрией равностороннего треугольника. В верхней части 
треугольной потенциальной ямы классическое движение является хаотическим для подавляющей 
части начальных условий. Структура найденных волновых функций в  этой области обладает 
характерными чертами, предсказываемыми теорией квантового хаоса.
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ВВЕДЕНИЕ
Быстрая заряженная частица, движущаяся 

в  кристалле под малым углом к  направлению 
плотно упакованной атомной цепочки, может за-
хватываться в потенциальную яму, образованную 
одной или  несколькими такими цепочками, со-
вершая финитное движение в  поперечной плос-
кости, называемое аксиальным каналированием 
[1–4]. В этом случае движение частицы с хорошей 
точностью описывается в  приближении непре-
рывного потенциала атомной цепочки, усреднен-
ного вдоль ее оси [5]. В  поле такого потенциала 
сохраняется продольная компонента импульса 
частицы p



, и задача о движении частицы сводит-
ся к двумерной задаче о движении в поперечной 
плоскости.

Известно (например, [1]), что при каналирова-
нии быстрых частиц в  кристаллах могут прояв-
ляться квантовые эффекты. В серии предыдущих 
работ [6–10] эти эффекты исследовали в  случае 
каналирования электронов в  направлении [110] 
кристалла кремния, а в [11–14] развитый подход 
был распространен на каналирование электронов 
и  позитронов в  направлении [100] кристалла 
кремния. Последний случай интересен тем, что 
в  фазовом пространстве каналированных частиц 
сосуществуют области регулярной и хаотической 
динамики. Симметрия потенциала, в  котором 
происходит поперечное движение, описывается 
в этих двух случаях группами 2vC  и  4vC  (симметрия 
прямоугольника и симметрия квадрата) [15] соот-
ветственно. В  этих работах было получено под-



ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ     № 1    2025 ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ     № 1    2025

Сыщенко и др.126

тверждение предсказаний теории квантового хао-
са [16–19], касающихся как статистических 
свойств массивов уровней энергии, так и  харак-
тера индивидуальных квантовых состояний в слу-
чае, когда движение каналированной частицы 
в классическом пределе носит хаотический харак-
тер. Отдельный интерес, однако, представляет 
случай движения частицы в поле потенциала, об-
ладающего симметрией равностороннего тре-
угольника (группа 3vC ). Именно таков, в частно-
сти, модельный потенциал Хенона–Хейлса, 
рассмотренный в одном из пионерских исследо-
ваний динамического хаоса [20]. Кроме того, одно 
из  пионерских исследований туннелирования, 
сопровождаемого хаосом (chaos-assisted tunneling) 
[21], также было выполнено для потенциала, об-
ладающего симметрией треугольника.

В настоящей работе с  помощью развитого 
в  [22] численного метода найдены наборы уров-
ней энергии поперечного движения и  соответ-
ствующих им волновых функций стационарных 
состояний позитронов, каналированных 
в  направлении [111] кристалла кремния. В  этом 
случае отталкивающие потенциалы соседних 
атомных цепочек создают небольшую потенци-
альную яму, обладающую симметрией 3vC . Обсу-
ждаются качественные особенности найденных 
волновых функций, дана их классификация в со-
ответствии с  неприводимыми представлениями 
группы 3vC . Прослежена связь найденных волно-
вых функций с  волновыми функциями частицы 
в  двумерной аксиально-симметричной потенци-
альной яме, параметры которой подобраны таким 
образом, чтобы обеспечить ту же среднюю квази-
классическую плотность уровней энергии, что и в 
рассматриваемой яме в кристалле кремния.

МЕТОДИКА
Движение релятивистской частицы в  кри-

сталле под малым углом к  плотно упакованной 
атомами кристаллографической оси может быть 
описано как двумерное движение в  поперечной 
(по  отношению к  этой оси) плоскости под воз-
действием непрерывных потенциалов, усреднен-
ных вдоль атомных цепочек, перпендикулярных 
этой плоскости, с  сохранением продольной 
компоненты импульса частицы p



. В  плоскости 
(111) кристалла кремния такие цепочки образуют 
гексагональную решетку со  стороной примитив-
ной ячейки ≈�=� / 6 � �2.217�za a Å, где za   — период 
решетки кремния. Для  позитрона непрерывный 
потенциал цепочки является отталкивающим, 
и вблизи центра треугольника, в вершинах кото-
рого находятся три ближайшие друг к  другу це-

почки, возникает небольшая потенциальная яма 
(рис. 1), в которой возможно финитное движение 
позитрона в поперечной плоскости — аксиальное 
каналирование. Потенциальная энергия пози-
трона с  учетом вкладов этих трех цепочек будет 
описываться следующей суммой:

( )    = − + + + +      

 + − + −  

1 1

1

, , ,
23 2 3

, 7.8571� ,эВ
2 2 3

a a a
U x y U x y U x y

a a
U x y

	 (1)

где константа выбрана таким образом, чтобы 
сделать потенциал равным нулю в  центре тре-
угольника. Непрерывный потенциал отдельной 
атомной цепочки аппроксимирован формулой 
[1]:

	 ( )  β= + + + α 

2

1 0 2 2 2
, ln 1

R
U x y U

x y R
, 	 (2)

где для  цепочки [111] кристалла кремния =0 � �U   
= 58.8 эВ, α =� �0.37, β=� �2.0, =� �0.194�R Å (радиус Тома-
са–Ферми). Состояния поперечного движения 
позитрона описываются гамильтонианом:

	 Ĥ ( ) ∂ ∂= − + + ∂ ∂ 

2 2 2 2

2 2
,

2
c

U x y
E x y


 , 	 (3)

в котором величина 2/E c


 играет роль массы ча-
стицы, а  ( )= +

1/22 4 2 2E m c p c
 

 — энергия продоль-
ного движения [1]. 

Нахождение собственных функций и  соб-
ственных значений гамильтониана (3) с  потен-
циалом (1) возможно только численно. В основе 
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Рис. 1. Потенциальная энергия (1) позитрона, дви-
жущегося вблизи направления [111] кристалла 
кремния.
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представляемого подхода лежит так называемый 
спектральный метод нахождения собственных 
значений и собственных функций гамильтониана 
[23] (детали которого применительно к задаче ка-
налирования описаны в [6–9, 24, 25]), включаю-
щий в себя численное моделирование временной 
эволюции волнового пакета, описываемой неста-
ционарным уравнением Шредингера. Специфи-
кой численного решения квантово-механической 
задачи с потенциалом (1) является необходимость 
задания волновой функции на  гексагональной 
дискретной сетке: в  [22] было показано, что 
использование квадратной сетки приводит к воз-
никновению нефизических артефактов. Там же 
была описана учитывающая симметрию задачи 
процедура, использующая гексагональную сетку, 
и  продемонстрировано отсутствие артефактов. 
Данная процедура использована в  настоящей 
работе.

Для исследования спектра гамильтониана (3) 
его собственные состояния необходимо класси-
фицировать в  соответствии со  свойствами сим-
метрии потенциала (1). Поскольку потенциал (1) 
обладает симметрией равностороннего треуголь-
ника, все доступные состояния поперечного дви-
жения можно классифицировать по  неприводи-
мым представлениям группы 3vC  (или изоморфной 
ей группы 3D ), (например, [15]) в  зависимости 
от типа симметрии волновой функции. Элементы 
группы включают в  себя тождественное преоб-
разование I, повороты на  углы π2 / 3 и  π4 / 3, 
обозначаемые R и  2R , отражение в  “вертикаль-
ной” плоскости P и  комбинации PR и  2PR . Эта 
группа имеет два одномерных неприводимых 
представления, обозначаемых 1A  и  2A , соответ-
ствующих невырожденным уровням энергии, 
и одно двумерное, обозначаемое E, соответствую-
щее двукратно вырожденным уровням. Функция, 
неизменная при  всех преобразованиях, образует 
базис одномерного неприводимого представле-
ния 1A . Начальный волновой пакет, удовлетворя-
ющий этому требованию, легко построить из ре-
зультатов действия на несимметричный волновой 
пакет гауссова вида ψ0 всех операторов группы, 
суммированных с одинаковыми весами:

	
( )ψ = ψ + ψ + ψ + ψ +

+ ψ + ψ

1 2
0 0 0 0

2
0 0.

A R R P

PR PR
	  (4)

Функция, меняющая знак при отражении,

	
( )ψ = ψ + ψ + ψ − ψ −

− ψ − ψ

2 2
0 0 0 0

2
0 0,

A R R P

PR PR
	  (5)

образует базис представления 2A . 

Поскольку полный набор собственных 
функций вещественного гамильтониана всегда 
можно выбрать вещественным (например, [19]), 
в  качестве двух линейно независимых волновых 
пакетов, содержащих только двукратно выро-
жденные состояния, удобно выбрать линейные 
комбинации вида:

	
( )ψ = ψ − ψ − ψ +

+ ψ − ψ − ψ

2
0 0 0

2
0 0 0,

1 1
2 2

1 1
2 2

RE R R

P PR PR

	  (6)

	
( )ψ = ψ − ψ −

− ψ + ψ

2
0 0

2
0 0.

3 3
2 2

3 3
2 2

IE R R

PR PR

	 (7)

Первая из этих функций сохраняет знак при от-
ражении P, вторая — меняет его, а при операциях 
поворотов графики этих функций поворачивают-
ся на  соответствующий угол. На  первый взгляд, 
такое поведение соответствует приводимому 
представлению группы, однако из  функций (6) 
и  (7) можно построить базис двумерного непри-
водимого представления E, если рассматривать 
их как вещественную и мнимую части комплекс-
ных базисных функций. Действительно, функции

( ) ( ) ( )ψ = ψ + ψ1
R IE EE i , ( ) ( ) ( )ψ = ψ − ψ2

R IE EE i

переходят друг в друга при отражениях, а при по-
воротах приобретают фазовый множитель. 

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
В работе численно найдены волновые функции 

стационарных состояний поперечного движения 
в  потенциальной яме (1) позитронов с  энергией 

= 5E


, 6 и 20 ГэВ. Из квазиклассических аргумен-
тов следует (например, [1]), что число связанных 
состояний в яме возрастает с ростом E



. Оказыва-
ется, что для энергии 5 ГэВ связанные состояния, 
относящиеся к  типу симметрии 2A , еще отсут-
ствуют, а при энергии 6 ГэВ первое такое состоя-
ние появляется вблизи верхнего края потенциаль-
ной ямы (ее глубина составляет 0.3278 эВ). Такое 
поведение неудивительно, если характер симмет-
рии волновых функций данного типа предполага-
ет наличие не  менее трех линий узлов в  азиму-
тальном направлении, что соответствует 
сравнительно высокому значению средней кине-
тической энергии состояния. Графики всех вол-
новых функций связанных стационарных состоя-
ний для  случая = 6E



 ГэВ приведены на  рис.  2 
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Рис. 2. Графики собственных функций дискретного спектра поперечного движения позитронов с энергией = 6E


 ГэВ  
в потенциальной яме (1), линиями отмечены классические границы движения ( ) ⊥=,U x y E . Также изображена схе-
ма уровней энергии поперечного движения позитронов, горизонтальным пунктиром отмечена высота седловой 
точки потенциала (1) = 0.3278U  эВ. 

вместе со  схемой уровней энергии поперечного 
движения ⊥E . 

Интересно сравнить волновые функции ста-
ционарных состояний в  потенциальной яме (1) 
с  аналогичными волновыми функциями в  акси-
ально-симметричной потенциальной яме. Для та-
кого сравнения была выбрана потенциальная яма 
в виде степенной функции 

	 ( ) 2 2, ,U x y r r x yδ= γ = + , 	 (8)

где коэффициенты γ  и  δ подбирали таким об-
разом, чтобы доступный для движения с энерги-
ей, меньшей или равной заданному значению ⊥E , 
фазовый объем: 

	 ( ) ⊥≤∫
�

, , ,x y
x yH x y p p E

dxdydp dp , 	 (9)

где ( ), , ,x yH x y p p   — классический гамильтониан 
системы) был одинаков для  потенциалов (1) 
и (8). Для позитронов с энергией = 6E



 ГэВ такой 

подбор дал значения коэффициентов γ = 3.1807, 
δ = 1.85 при  условии, что расстояние до  оси 
потенциальной ямы подставляется в  (8) в  анг-
стремах, а  потенциальная энергия выражается 
в электронвольтах.

В поле аксиально-симметричного потенциала 
наряду с  энергией поперечного движения ⊥E , 
сохраняется проекция орбитального момента ча-
стицы m на ось потенциальной ямы. Наличие двух 
этих интегралов движения делает двумерную си-
стему интегрируемой. Стационарные состояния 
в этом случае характеризуются двумя квантовыми 
числами: радиальным rn  (соответствующим числу 
нулей радиальной части волновой функции, 
за исключением обращения в нуль при r = 0 и на 
бесконечности) и орбитальным m (например, за-
дача 4.7 в  [26], а  также [7–9]), состояния с  m = 0 
невырожденные, а  состояния с  ≠ 0m  двукратно 
вырожденные по  знаку m (т.е. по  направлению 
проекции орбитального момента частицы на ось 
потенциальной ямы). В  последнем случае пару 
волновых функций, соответствующих такому дву-



ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ     № 1    2025 ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ     № 1    2025

ВОЛНОВЫЕ ФУНКЦИИ ПОЗИТРОНОВ ПРИ КАНАЛИРОВАНИИ 129

кратно вырожденному уровню энергии, удобно 
выбрать чисто вещественными в виде

	 ( ) ( )ρ φ ρ φ, ,sin ,� cos
r rn m n mr m r m . 	 (10)

Определить значения этих квантовых чисел 
для конкретного состояния можно путем подсче-
та линий узлов на  графике волновой функции. 
Для  удобства такого подсчета области положи-

тельных значений функции закрашивают белым, 
а отрицательных — черным, как на рис. 3–6, где 
в правых колонках приведены примеры волновых 
функций вида (10) стационарных состояний в по-
тенциальной яме (8). 

Теория групп предсказывает (например, [27]), 
что возмущение поля аксиально-симметричного 
потенциала, обладающего симметрией 3vC  (как 
в случае потенциала (1)), будет приводить к сня-
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Рис. 3. Сравнение волновых функций состояний с  ⊥ = 0.1487E  эВ в потенциальной яме (1) и волновых функций 
состояний с  ⊥ = 0.14822E  эВ в  потенциальной яме (8). Линиями отмечены классические границы движения 

( ) ⊥=,U x y E . Нерегулярность черных и белых областей вдали от центра потенциальной ямы обусловлена погрешно-
стями численного моделирования. 
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тию вырождения состояний, обладающих m , 
кратным трем, и сохранять вырождение в осталь-
ных случаях. Сопоставление волновых функций 
потенциала (1) с  волновыми функциями в  акси-
ально-симметричной потенциальной яме (8) ил-
люстрирует этот вывод: пара вырожденных состо-
яний с  = 0rn , = 1m  под влиянием возмущения 
переходит в пару также вырожденных наинизших 
состояний, относящихся к  типу симметрии E 
(рис. 3), пара состояний с  = 0rn , = 2m  переходит 

во вторую пару состояний типа E (рис. 4), а пара 
состояний с  = 1rn , = 1m  — в третью пару состоя-
ний типа E (рис. 5). Напротив, пара состояний с 

= 0rn , = 3m  расщепляется под действием возму-
щения на  два невырожденных состояния: третье 
состояние типа 1A  и первое (и единственное для 

= 6E


 ГэВ) состояние типа 2A  (рис. 6). 
Линии узлов волновых функций рис. 3–6 поз-

воляют проследить родство обсуждаемых состоя-
ний в потенциальных ямах (8) и (1). Кроме того, 
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Рис. 4. То же, что и на рис. 3, для состояний с  ⊥ = 0.22318E  эВ в потенциальной яме (1) и волновых функций состо-
яний с  ⊥ = 0.21943E  эВ в потенциальной яме (8).
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в характере линий узлов волновых функций в по-
тенциальной яме (1) проявляется важное отличие 
от интегрируемого потенциала (8). Как показыва-
ет исследование с помощью сечений Пуанкаре [2, 
28], в верхней части потенциала (1) второй инте-
грал движения отсутствует для подавляющей ча-
сти начальных условий, что делает уравнение дви-
жения в потенциальной яме (1) неинтегрируемым 
(в  отличие от  аксиально-симметричного потен-
циала (8)), а само движение — хаотическим. Одно 
из проявлений динамического хаоса в квантовой 

механике — как раз характер рисунка линий узлов 
волновой функции: в  регулярном (интегрируе-
мом) случае эти линии пересекаются, образуя узор 
типа шахматной доски, а в неинтегрируемом (ха-
отическом) — избегают пересечений [8, 9, 17, 19].  
Примеры такого избегания видны на левых верх-
них графиках рис. 4–6. 

Наиболее ярко, однако, эта особенность (как 
и  прочие характерные черты квантового хаоса) 
проявляются в  квазиклассической области зна-
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Рис. 5. То же, что и на рис. 3, для состояний с  ⊥ = 0.28313E  эВ в потенциальной яме (1) и волновых функций состо-
яний с  ⊥ = 0.28792E  эВ в потенциальной яме (8).
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Рис. 6. То же, что и на рис. 3, для состояний с  ⊥ = 0.29588E  эВ и  ⊥ = 0.30032E  эВ в потенциальной яме (1) и волновых 
функций состояний с  ⊥ = 0.28972E  эВ в потенциальной яме (8).
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Рис. 7. Волновая функция состояния типа RE  для позитрона с энергией = 20E


 ГэВ в потенциальной яме (1), соот-
ветствующая ⊥ = 0.31807E  эВ, (а) и график той же волновой функции, на котором области положительных значе-
ний закрашены белым, а отрицательных значений — черным (б).
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чений параметров, где плотность уровней энер-
гии велика и  где в  пределах потенциальной ямы 
укладывается много узлов и пучностей волновой 
функции. На рис. 7 представлен пример волновой 
функции стационарного состояния позитрона 
с  энергией = 20E



 ГэВ в  верхней части потен-
циальной ямы (1). Мы видим типичное для хао-
тической, неинтегрируемой системы отсутствие 
пересечений линий узлов. 

ЗАКЛЮЧЕНИЕ
В работе рассмотрено каналирование позитро-

нов с энергией 5, 6 и 20 ГэВ вблизи направления 
[111] кристалла кремния. С помощью разработан-
ного ранее алгоритма найдены все уровни энер-
гии поперечного движения и соответствующие им 
собственные функции. Графики всех волновых 
функций позитронов с энергией 6 ГэВ представ-
лены в настоящей работе, полные наборы графи-
ков волновых функций поперечного движения 
для случаев 5 и 20 ГэВ будут опубликованы в [29]. 

Найденные волновые функции классифици-
рованы по неприводимым представлениям груп-
пы 3vC , описывающей симметрию потенциальной 
ямы, в которой происходит поперечное движение 
каналированных позитронов. Продемонстриро-
вано, каким образом возмущение, обладающее 
симметрией равностороннего треугольника, при-
водит к  возникновению отличий данных волно-
вых функций от волновых функций в аксиально-
симметричной потенциальной яме. Показано, 
что в  верхней части потенциальной ямы, где 
классическое движение частицы является неинте-
грируемым для  подавляющего большинства на-
чальных условий, в структуре волновых функций 
появляются качественные особенности, отличаю-
щие их от волновых функций интегрируемых си-
стем. Такие отличия наиболее заметны в  случае 
позитронов с  энергией 20 ГэВ, поскольку воз-
росшая плотность уровней энергии делает спра-
ведливым квазиклассическое приближение, в ко-
тором и проявляются эффекты квантового хаоса. 
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Wave Functions of Positrons Channeling in [111] Direction of a Silicon Crystal
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For a positively charged particle, the repulsive uniform potentials of the three neighboring [111] chains 
of the silicon crystal form a small potential well with the symmetry of an equilateral triangle is described 
by the C3v group. The motion of a quantum particle in such a well is of interest in terms of manifestations 
of quantum chaos. A previously developed procedure for numerically finding the energy levels and 
wave functions of stationary states, taking into account the symmetry of this problem, is used to study 
the transverse motion of the channeling positrons with energies of 5, 6 and 20 GeV. A classification of 
stationary states of transverse motion of a positron is given based on the theory of group representations. 
The wave functions of the stationary states in an axially symmetric potential well are also found, and it is 
shown how these functions are modified under the influence of a perturbation with the symmetry of an 
equilateral triangle. In the upper part of the triangular potential well, the classical motion is chaotic for the 
majority of initial conditions. The structure of the wave functions in this domain has the features predicted 
by the quantum chaos theory. 

Keywords: channeling, silicon, numerical simulation, spectral method, hexagonal grid, triangular 
symmetry, quantum chaos.
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